Title:
|
On $\omega$-resolvable and almost-$\omega$-resolvable spaces (English) |
Author:
|
Angoa, J. |
Author:
|
Ibarra, M. |
Author:
|
Tamariz-Mascarúa, A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
49 |
Issue:
|
3 |
Year:
|
2008 |
Pages:
|
485-508 |
. |
Category:
|
math |
. |
Summary:
|
We continue the study of almost-$\omega$-resolvable spaces beginning in A. Tamariz-Mascar'ua, H. Villegas-Rodr'{\i}guez, {\it Spaces of continuous functions, box products and almost-$\omega$-resoluble spaces\/}, Comment. Math. Univ. Carolin. {\bf 43} (2002), no. 4, 687--705. We prove in ZFC: (1) every crowded $T_0$ space with countable tightness and every $T_1$ space with $\pi$-weight $\leq \aleph _1$ is hereditarily almost-$\omega$-resolvable, (2) every crowded paracompact $T_2$ space which is the closed preimage of a crowded Fréchet $T_2$ space in such a way that the crowded part of each fiber is $\omega$-resolvable, has this property too, and (3) every Baire dense-hereditarily almost-$\omega$-resolvable space is $\omega$-resolvable. Moreover, by using the concept of almost-$\omega$-resolvability, we obtain two results due the first one to O. Pavlov and the other to V.I. Malykhin: (1) $V = L$ implies that every crowded Baire space is $\omega$-resolvable, and (2) $V = L$ implies that the product of two crowded spaces is resolvable. Finally, we prove that the product of two almost resolvable spaces is resolvable. (English) |
Keyword:
|
Baire spaces |
Keyword:
|
resolvable spaces |
Keyword:
|
almost resolvable spaces |
Keyword:
|
almost-$\omega$-resolvable spaces |
Keyword:
|
tightness |
Keyword:
|
$\pi$-weight |
MSC:
|
54A10 |
MSC:
|
54A35 |
MSC:
|
54C05 |
MSC:
|
54D10 |
MSC:
|
54E52 |
idZBL:
|
Zbl 1212.54069 |
idMR:
|
MR2490442 |
. |
Date available:
|
2009-05-05T17:12:35Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119738 |
. |
Reference:
|
[A] Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and submaximal spaces: Homogeneity versus $\sigma$-discreteness and new ZFC examples.Topology Appl. 107 (2000), 259-273. Zbl 0984.54002, MR 1779814 |
Reference:
|
[Ar] Arkhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, Dordrecht (1992). MR 1144519 |
Reference:
|
[BM] Bella A., Malykhin V.I.: Tightness and resolvability.Comment. Math. Univ. Carolin. 39 (1998), 177-184. Zbl 0936.54004, MR 1623014 |
Reference:
|
[B] Bolstein R.: Sets of points of discontinuity.Proc. Amer. Math. Soc. 38 (1973), 193-197. Zbl 0232.54014, MR 0312457, 10.1090/S0002-9939-1973-0312457-9 |
Reference:
|
[CGF] Comfort W.W., García-Ferreira S.: Resolvability: a selective survey and some new results.Topology Appl. 74 (1996), 149-167. MR 1425934, 10.1016/S0166-8641(96)00052-1 |
Reference:
|
[CF] Comfort W.W., Feng L.: The union of resolvable spaces is resolvable.Math. Japon. 38 (1993), 413-114. Zbl 0769.54002, MR 1221007 |
Reference:
|
[vD] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51 (1993), 125-139. Zbl 0845.54028, MR 1229708, 10.1016/0166-8641(93)90145-4 |
Reference:
|
[E1] El'kin A.G.: Decomposition of spaces.Soviet Math. Dokl. 10 (1969), 521-525. Zbl 0202.53701 |
Reference:
|
[E2] El'kin A.G.: On the maximal resolvability of products of topological spaces.Soviet Math. Dokl. 10 (1969), 659-662. Zbl 0199.57302, MR 0248726 |
Reference:
|
[E3] El'kin A.G.: Resolvable spaces which are not maximally resolvable.Moscow Univ. Math. Bull. 24 (1969), 116-118. Zbl 0183.51204, MR 0256331 |
Reference:
|
[FL] Foran J., Liebnits P.: A characterization of almost resolvable spaces.Rend. Circ. Mat. di Palermo, Serie II XL (1991), 136-141. MR 1119751 |
Reference:
|
[FM] Feng L., Masaveu O.: Exactly $n$-resolvable spaces and $ømega$-resolvability.Math. Japon. 50 (1999), 333-339. Zbl 0998.54026, MR 1727655 |
Reference:
|
[Gr] Gruenhage G.: Generalized metric spaces.Handbook of Set Theoretic-Topology, K. Kunen and J. Vaughan, Eds., North Holland, Amsterdam, New York, Oxford, Tokio, 1984. Zbl 0794.54034, MR 0776629 |
Reference:
|
[H] Hewitt E.: A problem of set-theoretic topology.Duke Math. J. 10 (1943), 306-333. Zbl 0060.39407, MR 0008692, 10.1215/S0012-7094-43-01029-4 |
Reference:
|
[Ho] Hodel R.: Cardinal functions I.1-61 Handbook of Set-Theoretic Topology North-Holland (1984), Amsterdam-New-York-Oxford. Zbl 0559.54003, MR 0776620 |
Reference:
|
[I] Illanes A.: Finite and $ømega$-resolvability.Proc. Amer. Math. Soc. 124 (1996), 1243-1246. Zbl 0856.54010, MR 1327020, 10.1090/S0002-9939-96-03348-5 |
Reference:
|
[K] Katětov M.: On topological spaces containing no disjoint dense sets.Mat. Sbornik 21 (1947), 3-12. MR 0021679 |
Reference:
|
[KST] Kunen K., Szymansky A., Tall F.: Baire irresolvable spaces and ideal theory.Annal Math. Silesiana 2 (14) (1986), 98-107. MR 0861505 |
Reference:
|
[M1] Malykhin V.I.: On the resolvability of the product of two spaces and a problem of Katětov.Dokl. Akad. Nauk SSSR 222 (1975), 765-729. Zbl 0325.54017 |
Reference:
|
[M2] Malykhin V.I.: Product of ultrafilters and irresolvable spaces.Mat. Sbornik 90 (132) (1973), 105-115. 10.1070/SM1973v019n01ABEH001738 |
Reference:
|
[Pa] Pavlov O.: On resolvability of topological spaces.Topology Appl. 126 (2002), 37-47. Zbl 1012.54004, MR 1934251, 10.1016/S0166-8641(02)00004-4 |
Reference:
|
[Pa1] Pavlov O.: Problems on resolvability.in Open Problems in Topology, II (Elsevier Publishers, 2007). |
Reference:
|
[P] Pytkeev E.G.: On maximally resolvable spaces.Proc. Steklov Inst. Math. 154 (1984), 225-230. Zbl 0557.54002 |
Reference:
|
[TV] Tamariz-Mascarúa A., Villegas-Rodríguez H.: Spaces of continuous functions, box products and almost-$ømega$-resoluble spaces.Comment. Math. Univ. Carolin. 43 4 (2002), 687-705. MR 2045790 |
Reference:
|
[Vi1] Villegas L.M.: On resolvable spaces and groups.Comment. Math. Univ. Carolin. 36 (1995), 579-584. Zbl 0837.22001, MR 1364498 |
Reference:
|
[Vi2] Villegas L.M.: Maximal resolvability of some topological spaces.Bol. Soc. Mat. Mexicana 5 (1999), 123-136. Zbl 0963.22001, MR 1692526 |
Reference:
|
[W] Willard S.: General Topology.Addison-Wesley Publishing Co. (1970), Reading, Mass.-London-Don Mills. Zbl 0205.26601, MR 0264581 |
. |