Previous |  Up |  Next

Article

Keywords:
order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem
Summary:
Let $X$ be a completely regular $T_{1}$ space, $E$ a boundedly complete vector lattice, $ C(X)$ $(C_{b}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_{n}^{*}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.
References:
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Academic Press, 1985. MR 0809372 | Zbl 0608.47039
[2] Diestel, J., Uhl, J. J.: Vector measures. Math. Surveys 15 (1977), 322. MR 0453964 | Zbl 0369.46039
[3] Kaplan, S.: The second dual of the space of continuous function. Trans. Amer. Math. Soc. 86 (1957), 70–90. DOI 10.1090/S0002-9947-1957-0090774-3 | MR 0090774
[4] Kaplan, S.: The second dual of the space of continuous functions IV. Trans. Amer. Math. Soc. 113 (1964), 517–546. DOI 10.1090/S0002-9947-1964-0170205-9 | MR 0170205 | Zbl 0126.12002
[5] Kawabe, J.: The Portmanteau theorem for Dedekind complete Riesz space-valued measures. Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158. MR 2144038 | Zbl 1076.28004
[6] Kawabe, J.: Uniformity for weak order convergence of Riesz space-valued measures. Bull. Austral. Math. Soc. 71 (2) (2005), 265–274. DOI 10.1017/S0004972700038235 | MR 2133410
[7] Khurana, Surjit Singh: Lattice-valued Borel Measures. Rocky Mountain J. Math. 6 (1976), 377–382. DOI 10.1216/RMJ-1976-6-2-377 | MR 0399409
[8] Khurana, Surjit Singh: Lattice-valued Borel Measures II. Trans. Amer. Math. Soc. 235 (1978), 205–211. DOI 10.1090/S0002-9947-1978-0460590-2 | MR 0460590 | Zbl 0325.28012
[9] Khurana, Surjit Singh: Vector measures on topological spaces. Georgian Math. J. 14 (2007), 687–698. MR 2389030 | Zbl 1154.46025
[10] Kluvanek, I., Knowles, G.: Vector measures and Control Systems. North-Holland Math. Stud. 20 (58) (1975), ix+180 pp. MR 0499068
[11] Lewis, D. R.: Integration with respect to vector measures. Pacific J. Math. 33 (1970), 157–165. DOI 10.2140/pjm.1970.33.157 | MR 0259064 | Zbl 0195.14303
[12] Lipecki, Z.: Riesz representation representation theorems for positive operators. Math. Nachr. 131 (1987), 351–356. DOI 10.1002/mana.19871310130 | MR 0908823
[13] Meyer-Nieberg, P.: Banach Lattices and positive operators. Springer-Verlag, 1991. MR 1128093
[14] Schaefer, H. H.: Banach Lattices and Positive Operators. Springer-Verlag, 1974. MR 0423039 | Zbl 0296.47023
[15] Schaefer, H. H.: Topological Vector Spaces. Springer-Verlag, 1986. MR 0342978
[16] Schaefer, H. H., Zhang, Xaio-Dong: A note on order-bounded vector measures. Arch. Math. (Basel) 63 (2) (1994), 152–157. DOI 10.1007/BF01189889 | MR 1289297
[17] Schmidt, K. D.: On the Jordan decomposition for vector measures. Probability in Banach spaces, IV. (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York. MR 0707518
[18] Schmidt, K. D.: Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39. MR 0829177 | Zbl 0569.28011
[19] Varadarajan, V. S.: Measures on topological spaces. Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220.
[20] Wheeler, R. F.: Survey of Baire measures and strict topologies. Exposition. Math. 2 (1983), 97–190. MR 0710569 | Zbl 0522.28009
[21] Wright, J. D. M.: Stone-algebra-valued measures and integrals. Proc. London Math. Soc. (3) 19 (1969), 107–122. MR 0240276 | Zbl 0186.46504
[22] Wright, J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. DOI 10.5802/aif.393 | MR 0330411 | Zbl 0215.48101
[23] Wright, J. D. M.: Vector lattice measures on locally compact spaces. Math. Z. 120 (1971), 193–203. DOI 10.1007/BF01117493 | MR 0293373 | Zbl 0198.47803
[24] Wright, J. D. M.: Measures with values in partially ordered vector spaces. Proc. London Math. Soc. 25 (1972), 675–688. MR 0344413
[25] Wright, J. D. M.: An algebraic characterization of vector lattices with Borel regularity property. J. London Math. Soc. 7 (1973), 277–285. DOI 10.1112/jlms/s2-7.2.277 | MR 0333116
Partner of
EuDML logo