Previous |  Up |  Next

Article

Title: Quadratic splines interpolating derivatives (English)
Author: Kobza, Jiří
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 30
Issue: 1
Year: 1991
Pages: 219-233
.
Category: math
.
MSC: 41A05
MSC: 41A15
idZBL: Zbl 0758.41005
idMR: MR1166439
.
Date available: 2009-01-29T15:38:09Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120259
.
Reference: [1] Anwar M.N.: A direct cubic spline approach for IVP’s.in [9] , 9-18.
Reference: [2] Berg L.: Differenzengleichuпgen zweiter Ordnung mit Anwenduпgen.DVW Berlin, 1979.
Reference: [3] Boor C.de: A Practical Guide to Splines.Springer Verlag, N.Y. 1978. Zbl 0406.41003, MR 0507062
Reference: [4] Hřebíček J., Mikulík M.: Cubic splines preserving monotonicity aпd convexity.(in Czech), Num. Math. Phys. Metalurgy, Blansko 198E.
Reference: [5] Kobza J.: On algorithms for parabolic splines.Acta UPO, Fac.rer.nat., Math. XXIV, V. 88 (1987), 169-185. Zbl 0693.65005, MR 1033338
Reference: [б] Kobza J.: Some properties of interpolating quadratic spline.Acta UPO, Fac.rer.nat. 97 (1990) (to appear). Zbl 0748.41006, MR 1144830
Reference: [7] Makarov V.L., Chlobystov V.V.: Spline-Approximation of Functions.(in Russiaп), Nauka, Moscow, 1983.
Reference: [8] Sallam S., El-Tarazi M.N.: Quadratic spline interpolation on uniform meshes.in [9], 145-150. Zbl 0765.41014, MR 1004259
Reference: [9] Schmidt J.W., Späth H. (eds.): Splines in Numerical Analysis.Akademie-Verlag, Berlin, 1989. Zbl 0664.00022, MR 1004245
Reference: [10] Stӗčkin S.B., Subbotin J.N.: Splines in Numerical Analysis.(in Russian), Nauka, Moscow 1976.
Reference: [11] Usmani R.A.: On quadratic spline interpolation.BIT 27 (1987), 615-622. Zbl 0631.41009, MR 0916733
.

Files

Files Size Format View
ActaOlom_30-1991-1_19.pdf 1.593Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo