Previous |  Up |  Next

Article

Title: Complete solution of a family of simultaneous Pellian equations (English)
Author: Dujella, Andrej
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 6
Issue: 1
Year: 1998
Pages: 59-67
.
Category: math
.
MSC: 11D09
MSC: 11D25
idZBL: Zbl 1024.11014
idMR: MR1822516
.
Date available: 2009-01-30T09:06:02Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120541
.
Reference: [1] Baker A.: The diophantine equation $y^2 = ax^3 + bx^2 + cx + d$.J. London Math. Soc 43 (1968), 1-9. Zbl 0157.09801, MR 0231783, 10.1112/jlms/s1-43.1.1
Reference: [2] Baker A., Davenport H.: The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$.Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. MR 0248079, 10.1093/qmath/20.1.129
Reference: [3] Bennett M.A.: On the number of solutions of simultaneous Pell equations.J. Reine Angew. Math., to appear. Zbl 1165.11034, MR 1629862
Reference: [4] Brown E.: Sets in which xy + k is always a square.Math. Comp. 45 (1985), 613-620. Zbl 0577.10015, MR 0804949
Reference: [5] Cohn J. H. E.: Lucas and Fibonacci numbers and some Diophantine equations.Proc. Glasgow Math. Assoc. 7 (1965), 24-28. Zbl 0127.01902, MR 0177944
Reference: [6] Dickson L. E.: History of the Theory of Numbers, Vol. 2.Chelsea, New York, 1966, pp. 518-519.
Reference: [7] Diophantus of Alexandria: Arithmetics and the Book of Polygonal Numbers.(I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
Reference: [8] Dujella A.: Generalization of a problem of Diophantus.Acta Arith. 65 (1993), 15-27. Zbl 0849.11018, MR 1239240
Reference: [9] Dujella A.: The problem of the extension of a parametric family of Diophantine triples.Publ. Math. Debrecen 51 (1997), 311-322. Zbl 0903.11010, MR 1485226
Reference: [10] Dujella A.: A proof of the Hoggatt-Bergum conjecture.Proc. Amer. Math. Soc., to appear. Zbl 0937.11011, MR 1605956
Reference: [11] Dujella A.: An extension of an old problem of Diophantus and Euler.(preprint). Zbl 1125.11308, MR 1730070
Reference: [12] Dujella A., Petho A.: Generalization of a theorem of Baker and Davenport.Quart. J. Math. Oxford Ser. (2), to appear.
Reference: [13] Gupta H. K., Singh K.: On k-triad sequences.Internat. J. Math. Math. Sci. 5 (1985), 799-804. Zbl 0585.10006, MR 0821637, 10.1155/S0161171285000886
Reference: [14] Kedlaya K. S.: Solving constrained Pell equations.Math. Comp., to appear. Zbl 0945.11027, MR 1443123
Reference: [15] Mohanty S. P., Ramasamy A. M. S.: The simultaneous Diophantine equations $5y^2 - 20 = x^2$ and $2y^2 + 1 = z^2$.J. Number Theory 18 (1984), 356-359. MR 0746870, 10.1016/0022-314X(84)90068-4
Reference: [16] Mohanty S. P., Ramasamy A.M.S.: On $P_{r,k}$ sequences.Fibonacci Quart. 23 (1985), 36-44. MR 0786359
Reference: [17] Nagell T.: Introduction to Number Theory.Almqvist, Stockholm, Wiley, New York, 1951. Zbl 0042.26702, MR 0043111
Reference: [18] Rickert J. H.: Simultaneous rational approximations and related diophantine equations.Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472. Zbl 0786.11040, MR 1207511, 10.1017/S0305004100076118
Reference: [19] : SIMATH Manual.Universität des Saarlandes, Saarbrücken, 1993.
.

Files

Files Size Format View
ActaOstrav_06-1998-1_9.pdf 1.095Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo