[1] D. F. Delchamps: 
Global structure of families of multivariable linear systems with an application to identification. Math. Systems Theory 18 (1985), 329-380. 
MR 0818420 
[2] S. Amari: 
Differential geometry of a parametric family of invertible linear systems -- Riemannian metric, dual affine connections, and divergence. Math. Systems Theory 20 (1987), 53-83. 
MR 0901894 | 
Zbl 0632.93017 
[3] P. S. Krishnaprasad: 
Symplectic mechanics and rational functions. Ricerche Automat. 10 (1979), 2, 107-135. 
MR 0614258 
[4] A. D. C. Youla H. A. Jabr, J. J. Bongiorno: 
Modern Wiener-Hopf design of optimal controllers. Part II -- the multivariable case. IEEE Trans. Automat. Control 21 (1976), 319-338. 
MR 0446637 
[5] V. Kučera: 
Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979. 
MR 0573447 
[6] A. Ohara, T. Kitamori: 
Geometric structures of stable state feedback systems. In: Proc. of 29th IEEE C.D.C. 1990, pp. 2494-2490, and IEEE Trans. Automat. Control 38 (1993), 10, 1579-1583. 
MR 1242914 
[7] A. Ohara, S. Amari: Differential geometric structures of stable state feedback systems with dual connections. In: Proc. 2nd IFAC Workshop on System Structure and Control 1992, pp. 176-179.
[9] A. Ohara S. Nakazumi, N. Suda: 
Relations between a parametrization of stabilizing state feedback gains and eigenvalue locations. Systems Control Lett. 16 (1991), 261-266. 
MR 1102211 
[10] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry II. J. Wiley, New York 1969.
[11] S. Helgason: 
Differential Geometry and Symmetric Spaces. Academic Press, New York 1962. 
MR 0145455 | 
Zbl 0111.18101 
[12] M. Takeuchi: 
Lie Groups II. Iwanami, Tokyo 1978 (in Japanese). 
MR 0839859