Previous |  Up |  Next

Article

Title: Large scale dynamic system stabilization using the principle of dominant subsystems approach (English)
Author: Veselý, Vojtech
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 29
Issue: 1
Year: 1993
Pages: 48-61
.
Category: math
.
MSC: 93A15
MSC: 93D15
MSC: 93D99
idZBL: Zbl 0790.93122
idMR: MR1227741
.
Date available: 2009-09-24T18:38:20Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124550
.
Reference: [1] J. Bernussou, A. Titli: Interconnected Dynamical Systems: Stability, Decomposition and Decentralization.North Holland, Amsterdam 1982. MR 0687386
Reference: [2] J. C. Doyle, K. Stein: Multivariable feedback design: concepts for a classical/modeгn synthesis.IEEE Trans. Automat. Control AC-26 (1981), 4-16.
Reference: [3] M. Fiedleг: Special Matrices and their Appłication in Numerical Analysis.(in Czech). SNTL, Praha 1981.
Reference: [4] D. Gavel, D. D. Siljak: Decentralized adaptive control: structural conditions for stability.IEEE Trans. Automat. Control AC-З4 (1989), 413-426 Zbl 0681.93001, MR 0987804
Reference: [5] J. G. Geromel, J. Bernussou: Optimal dccentralized control of dynamic systems.Automatica 18 (1982), 545-557. MR 0693487
Reference: [6] P. A. loannou: Decentralized adaptive control of interconnected systems.IEEE Trans. Automat. Control AC-31 (1986), 290-298. MR 0832946
Reference: [7] J. Lunze: Robust Multivariable Feedback Control.Akademie-Verlag, Berlin 1988. MR 1031716
Reference: [8] J. Maršik: A new conception of digital adaptive PSD control.Problems Control and Inform. Theory 12 (1983), 267-271.
Reference: [9] A. N. Michel, R. K. Miller: Qualitative Analysis of Large Scale Dynamical Systems.Academic Press, New York 1977. Zbl 0494.93002, MR 0444204
Reference: [10] J. Murgaš, I. Hejda: Decentralized adaptive stabilization with state regulators.Kybernetika 26 (1990), 6, 496-504. MR 1089812
Reference: [11] V. V. Rumyantsev, A. S. Oziraner: Stability and Stabilization of the Motion Respecting the Part of Variables.(in Russian). Nauka, Moskva 1987. MR 0912266
Reference: [12] M.G. Singh: Decentralized Control.North Holland, Amstєrdam 1981.
Reference: [13] D. D. Šiljak, M. B. Vukčevič: Decentrally stabilizable linear and bilinear large scale systems.Internat. J. Control 26 (1977), 289-305. MR 0497137
Reference: [14] D. G. Taylor P. V. Kokotovic R. Marino, I. Kanellakopoulos: Adaptive regulation of nonlinear systems with unmodeld dynarnics.IEEE Trans. Automat. Control З4 (1989), 4, 405-412. MR 0987803
Reference: [15] V. Veselý: Decentralized control of linear dynamical systems with partial aggгegation.Kybernetika 25 (1989), 5, 408-418. MR 1024714
Reference: [16] V. Veselý J. Murgaš, I. Hejda: Simple adaptive decentralized controllers.In: Preprints of the 11-th IFAC World Congres, Tallin USSR 4, pp. 281-286.
Reference: [17] V. Veselý, J. Murgaš: Design of Decentralized Adaptive Controllers Using the Principle of Dominant Subsystems.In: Preprints of international Symposium on Adaptive Systems in Control and Signal Processing, Grenoble, France 1992, pp. 651-655.
Reference: [18] V. Veselý: Decentralized Adaptive Control of Non-Linear Systems with Uncertainties: Lyapunov Function Approach.Electrical Engrg. J. 4З (1992), 5, 129-136 .
Reference: [19] A. A. Voronov: Introduction to Dynamic of Complex Controllable Systems.(in Russian). Nauka, Moskva 1985. MR 0804612
.

Files

Files Size Format View
Kybernetika_29-1993-1_4.pdf 969.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo