Previous |  Up |  Next

Article

Title: Remarks on the theory of implicit linear continuous-time systems (English)
Author: Przyłuski, K. Maciej
Author: Sosnowski, Andrzej
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 5
Year: 1994
Pages: 507-515
.
Category: math
.
MSC: 34H05
MSC: 93B05
MSC: 93C05
MSC: 93C35
MSC: 93C99
idZBL: Zbl 0833.93031
idMR: MR1314346
.
Date available: 2009-09-24T18:50:08Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125140
.
Reference: [1] A. Banaszuk M. Kociecki, K. M. Przyluski: On almost invariant subspaces for implicit linear discrete-time systems.Systems Control Lett. 11 (1988), 289-297. MR 0965276
Reference: [2] A. Banaszuk M. Kociecki, K.M. Przyluski: Implicit linear discrete-time systems.Math. Control Signals Systems 3 (1990), 271-297. MR 1052858
Reference: [3] A. Banaszuk M. Kociecki, K.M. Przyluski: Kalman-type decomposition for implicit linear discrete-time systems and its applications.Internat. J. Control 52 (1990), 1263-1271. MR 1074917
Reference: [4] D. Cobb: On the solutions of linear differential equations with singular coefficients.J. Differential Equations 46 (1982), 310-323. Zbl 0489.34006, MR 0681226
Reference: [5] D. Cobb: A further interpretation of inconsistent initial conditions in descriptor variable systems.IEEE Trans. Automat. Control AC-28 (1983), 920-922. Zbl 0522.93037, MR 0712957
Reference: [6] D. Cobb: Controllability, observability and duality in singular systems.IEEE Trans. Automat. Control AC-29 (1984), 920-922. MR 0771396
Reference: [7] V. Dolezal: Dynamics of Linear Systems.Academia, Prague 1967. Zbl 0173.30303, MR 0220530
Reference: [8] H. Frankowska: On controllability and observability of implicit systems.Systems Control Lett. 14 (1990), 219-223. Zbl 0699.93003, MR 1049356
Reference: [9] F. R. Gantmacher: The Theory of Matrices.Chelsea, New York 1959. Zbl 0085.01001
Reference: [10] T. Geerts: Free end-point linear-quadratic control subject to implicit continuous-time systems: necessary and sufficient conditions for solvability.In: Preprints of the Second IFAC Workshop on System Structure and Control, Prague 1992, pp. 28-31 MR 1264876
Reference: [11] T. Geerts: Invariant subspaces and invertibility properties of singular systems: the general case.Res. Memo. 557, Dept. of Economics, Tilburg University 1992. MR 1208197
Reference: [12] T. Geerts: Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant linear systems: the general case.Res. Memo. 558, Dept. of Economics, Tilburg University 1992.
Reference: [13] T. Geerts, V. Mehrmann: Linear differential equations with constant coefficients: A distributional approach.Preprint 09-073, Universität Bielefeld 1990.
Reference: [14] M. L. J. Hautus, L. M. Silverman: System structure and singular control.Linear Algebra Appl. 50 (1983), 369-402. Zbl 0522.93021, MR 0699568
Reference: [15] L. Hormander: The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis.Springer-Verlag, Berlin 1983. MR 0717035
Reference: [16] K. Ozcaldiran, L. Haliloglu: Structural properties of singular systems. Part 1: Controllability.In: Preprints of the 2 IFAC Workshop on System Structure and Control, Prague 1992, pp. 344-347 MR 1264885
Reference: [17] V.-P. Peltola: Singular systems of ordinary linear differential equations with constant coefficients.Report-MAT-A221, Helsinki University of Technology 1984.
Reference: [18] K. M. Przyluski, A. Sosnowski: Remarks on implicit linear continuous-time systems.In: Preprints of the 2 IFAC Workshop on System Structure and Control, Prague 1992, pp. 328-331
Reference: [19] V. S. Vladimirov: Generalized Functions in Mathematical Physics.Mir Publishers, Moscow 1979. Zbl 0515.46034, MR 0564116
Reference: [20] K.-T. Wong: The eigenvalue problem $\lambda Tx + Sx$.J. Differential Equations 16 (1974), 270-280. Zbl 0327.15015, MR 0349711
.

Files

Files Size Format View
Kybernetika_30-1994-5_4.pdf 470.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo