Previous |  Up |  Next

Article

Keywords:
evaluation; Fresnel integrals; Leibniz rule
Summary:
We evaluate the Fresnel integrals by using the Leibniz rule only on a finite interval.
References:
[FL] H. Flanders: On the Fresnel integrals. Amer. Math. Monthly 89 (1982), 264-266. DOI 10.2307/2320230 | MR 0650673 | Zbl 0599.26012
[JA] V. Jarník: Integrální počet II. ČSAV, Praha, 1955, pp. 340-342 and 361-363.
[Mac] E. J. McShane: Unified integration. Academic Press, Inc., Orlando, 1983. MR 0740710 | Zbl 0551.28001
[ML] R. M. McLeod: The generalized Riemann integral. The Mathematical Association of America, Washington DC, 1980. MR 0588510 | Zbl 0486.26005
[SW] J. D. DePree, Ch. W. Swartz: Introduction to Real Analysis. John Wiley & Sons, New York, 1988, p. 199. MR 1042294
[WE] R. Weinstock: Elementary Evaluations of $\int_0^{infty} e^{-x^2} dx$, $\int_0^{infty} \cos x^2 dx$, and $\int_0^{infty} \sin x^2 dx$. Amer. Math. Monthly 97 (1990), 39-42. MR 1034348
[YZ] J. van Yzeren: Moivre's and Fresnel's integrals by simple integration. Amer. Math. Monthly 86 (1979), 691-693. MR 1539141 | Zbl 0446.26003
Partner of
EuDML logo