[2] Ball J.M.:
On the calculus of variations and sequentially weakly continuous maps. Proc. Conf. Ordinary and Partial Differential Equations (Everitt W.N., Sleeman B.D., eds.). Lecture Notes in Math. 564, Springer, Berlin, 1976, pp. 13-25.
MR 0637229 |
Zbl 0348.49004
[4] Ball J.M.:
A version of the fundamental theorem for Young measures. PDEs and Continuum Models of Phase Transition (Rascle M., Serre D., Slemrod M., eds.). Lecture Notes in Physics 344, Springer, Beгlin, 1989, pp. 207-215.
MR 1036070 |
Zbl 0991.49500
[6] Ball J.M., James R.D.:
Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. Royal Soc. London A 338, (1992), 389-450.
DOI 10.1098/rsta.1992.0013 |
Zbl 0758.73009
[7] Buttazzo G.:
Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes in Math. 207, Longman, New York, 1989.
MR 1020296 |
Zbl 0669.49005
[11] Dacorogna B.:
Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals. Lecture Notes in Math. 922. Springer, Berlin, 1982.
DOI 10.1007/BFb0096144 |
MR 0658130
[14] Dunford N., Schwartz J.T.: Linear Operators, Part I. Interscience, New York, 1967.
[15] Ekeland I., Temam R.:
Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976.
MR 0463994 |
Zbl 0322.90046
[16] Friesecke G.:
A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems. Proc. Royal Soc. Edinburgh 124 A (1994), 437-471.
MR 1286914 |
Zbl 0809.49017
[17] Giaquinta M.:
Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Univ. Bonn, Lecture Notes No. 443, 1981.
MR 0717034
[20] Kohn R. V., Strang G.:
Optimal design and relaxation of variational problems. Comm. Pure Appl. Math. 39, (1986), 113-137, 139-182, 353-377.
DOI 10.1002/cpa.3160390107
[21] McShane E.J.:
Necessary conditions in the generalized-curve problems of the calculus of variations. Duke Math. J. 7, (1940), 1-27.
MR 0003478
[23] Müller S.:
Weak continuity of determinants and nonlinear elasticity. C.R. Acad. Sci. Paris, Série I 307, (1988), 501-506.
MR 0964116 |
Zbl 0679.34051
[24] Outrata J.V.: personal communication, November 1992..
Zbl 0790.90064
[25] Reshetnyak Y.G.:
On the stability of conformal mappings in multidimensional spaces. Siberian Math. J. 8, (1967), 69-85.
Zbl 0172.37801
[26] Roubíček T.:
Convex compactifications and special extensions of optimization problems. Nonlinear Analysis, Theory, Methods, Appl. 16 (1991), 1117-1126.
MR 1111622
[27] Roubíček T.:
Minimization on convex compactifications and relaxation of nonconvex variational problems. Advances in Math. Sciences and Appl. 1, (1992), 1-18.
MR 1161481
[29] Roubíček T.:
A note about optimality conditions for variational problems with rapidly oscillating solutions. Progress in Partial Differential Equations: Calculus of variations, applications (C.Bandle et al., eds.). Pitman Res. Notes in Math. Sci. 267 (1992), Longmann, Harlow, Essex, pp. 312-314.
MR 1194208
[30] Roubíček T.:
Optimality conditions for nonconvex variational problems relaxed in terms of Young measures. DFG Report No. 375. Technische Universität München, 1992, (submitted).
MR 1194208
[31] Roubíček, T: Effective characterization of generalized Young measures generated by gradients. Bollettino Unione Matematica Italiana, (in print).
[32] Roubíček T.:
Nonconcentrating generalized Young functionals. (submìtted).
Zbl 0888.49027
[33] Roubíček T., Hoffmann K.-H.:
Convex local compactifications with applications to Lebesgue spaces. Nonlinear Analysis, Theory, Methods, Appl. 25 (1995), 607-628.
MR 1338806 |
Zbl 1129.46306
[34] Warga J.:
Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.
MR 0372708 |
Zbl 0253.49001
[35] Young L.C.:
Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, (1937), 212-234.
Zbl 0019.21901