Previous |  Up |  Next

Article

Title: Relaxation of vectorial variational problems (English)
Author: Roubíček, Tomáš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 4
Year: 1995
Pages: 411-430
Summary lang: English
.
Category: math
.
Summary: Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification. (English)
Keyword: variational relaxation
Keyword: abstract relaxed problem
Keyword: first-order optimality conditions
Keyword: Carathéodory integrands
Keyword: quasiconvexified problem
Keyword: Young measures
Keyword: relaxed variational problems
Keyword: minors of gradients
Keyword: optimality conditions
Keyword: Weierstrass-type maximum principle
MSC: 35D05
MSC: 46E35
MSC: 49J45
MSC: 49J99
MSC: 49K27
MSC: 49K99
MSC: 73V25
MSC: 74P10
MSC: 74S30
MSC: 90C29
idZBL: Zbl 0859.49013
idMR: MR1415089
DOI: 10.21136/MB.1995.126087
.
Date available: 2009-09-24T21:13:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126087
.
Reference: [1] Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations.Archive Rat. Mech. Anal. 86 (1984), 125-145. Zbl 0565.49010, MR 0751305, 10.1007/BF00275731
Reference: [2] Ball J.M.: On the calculus of variations and sequentially weakly continuous maps.Proc. Conf. Ordinary and Partial Differential Equations (Everitt W.N., Sleeman B.D., eds.). Lecture Notes in Math. 564, Springer, Berlin, 1976, pp. 13-25. Zbl 0348.49004, MR 0637229
Reference: [3] Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity.Archive Rat. Mech. Anal. 63, (1977), 337-403. Zbl 0368.73040, MR 0475169, 10.1007/BF00279992
Reference: [4] Ball J.M.: A version of the fundamental theorem for Young measures.PDEs and Continuum Models of Phase Transition (Rascle M., Serre D., Slemrod M., eds.). Lecture Notes in Physics 344, Springer, Beгlin, 1989, pp. 207-215. Zbl 0991.49500, MR 1036070
Reference: [5] Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy.Archive Rat. Mech. Anal. 100, (1988), 13-52. MR 0906132, 10.1007/BF00281246
Reference: [6] Ball J.M., James R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem.Phil. Trans. Royal Soc. London A 338, (1992), 389-450. Zbl 0758.73009, 10.1098/rsta.1992.0013
Reference: [7] Buttazzo G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations.Pitman Res. Notes in Math. 207, Longman, New York, 1989. Zbl 0669.49005, MR 1020296
Reference: [8] Chipot M.: Numerical analysis of oscillations in nonconvex problems.Numer. Math. 59, (1991), 747-767. Zbl 0712.65063, MR 1128031, 10.1007/BF01385808
Reference: [9] Chipot M., Collins C.: Numerical approximations in variational problems with potential wells.SIAM J. Numer. Anal. 29, (1992), 1002-1019.. Zbl 0763.65049, MR 1173182, 10.1137/0729061
Reference: [10] Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals.Aгch. Rational Mech. Anal. 103, (1988), 237-277. Zbl 0673.73012, MR 0955934, 10.1007/BF00251759
Reference: [11] Dacorogna B.: Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals.Lecture Notes in Math. 922. Springer, Berlin, 1982. MR 0658130, 10.1007/BFb0096144
Reference: [12] Dacorogna B.: Direct Methods in the Calculus of Variations.Springer, Berlin, 1989. Zbl 0703.49001, MR 0990890
Reference: [13] DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Comm. Math. Physics 108, (1987), 667-689. Zbl 0626.35059, MR 0877643, 10.1007/BF01214424
Reference: [14] Dunford N., Schwartz J.T.: Linear Operators, Part I.Interscience, New York, 1967.
Reference: [15] Ekeland I., Temam R.: Convex Analysis and Variational Problems.North-Holland, Amsterdam, 1976. Zbl 0322.90046, MR 0463994
Reference: [16] Friesecke G.: A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems.Proc. Royal Soc. Edinburgh 124 A (1994), 437-471. Zbl 0809.49017, MR 1286914
Reference: [17] Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.Univ. Bonn, Lecture Notes No. 443, 1981. MR 0717034
Reference: [18] Hoffmann K.-H., Roubíček, T: Optimal control of a fine structure.Appl. Math. Optim. 30, (1994), 113-126. Zbl 0812.49009, MR 1284322, 10.1007/BF01189449
Reference: [19] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation.SIAM J. Math. Anal. 23, (1992), 1-19. Zbl 0757.49014, MR 1145159, 10.1137/0523001
Reference: [20] Kohn R. V., Strang G.: Optimal design and relaxation of variational problems.Comm. Pure Appl. Math. 39, (1986), 113-137, 139-182, 353-377. 10.1002/cpa.3160390107
Reference: [21] McShane E.J.: Necessary conditions in the generalized-curve problems of the calculus of variations.Duke Math. J. 7, (1940), 1-27. MR 0003478
Reference: [22] Morrey C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals.Pacific J. Math. 2, (1952), 25-53. Zbl 0046.10803, MR 0054865, 10.2140/pjm.1952.2.25
Reference: [23] Müller S.: Weak continuity of determinants and nonlinear elasticity.C.R. Acad. Sci. Paris, Série I 307, (1988), 501-506. Zbl 0679.34051, MR 0964116
Reference: [24] Outrata J.V.: .personal communication, November 1992.. Zbl 0790.90064
Reference: [25] Reshetnyak Y.G.: On the stability of conformal mappings in multidimensional spaces.Siberian Math. J. 8, (1967), 69-85. Zbl 0172.37801
Reference: [26] Roubíček T.: Convex compactifications and special extensions of optimization problems.Nonlinear Analysis, Theory, Methods, Appl. 16 (1991), 1117-1126. MR 1111622
Reference: [27] Roubíček T.: Minimization on convex compactifications and relaxation of nonconvex variational problems.Advances in Math. Sciences and Appl. 1, (1992), 1-18. MR 1161481
Reference: [28] Roubíček T.: A general view to relaxation methods in control theory.Optimization 23, (1992), 261-268. Zbl 0814.49023, MR 1238429, 10.1080/02331939208843763
Reference: [29] Roubíček T.: A note about optimality conditions for variational problems with rapidly oscillating solutions.Progress in Partial Differential Equations: Calculus of variations, applications (C.Bandle et al., eds.). Pitman Res. Notes in Math. Sci. 267 (1992), Longmann, Harlow, Essex, pp. 312-314. MR 1194208
Reference: [30] Roubíček T.: Optimality conditions for nonconvex variational problems relaxed in terms of Young measures.DFG Report No. 375. Technische Universität München, 1992, (submitted). MR 1194208
Reference: [31] Roubíček, T: Effective characterization of generalized Young measures generated by gradients.Bollettino Unione Matematica Italiana, (in print).
Reference: [32] Roubíček T.: Nonconcentrating generalized Young functionals.(submìtted). Zbl 0888.49027
Reference: [33] Roubíček T., Hoffmann K.-H.: Convex local compactifications with applications to Lebesgue spaces.Nonlinear Analysis, Theory, Methods, Appl. 25 (1995), 607-628. Zbl 1129.46306, MR 1338806
Reference: [34] Warga J.: Optimal Control of Differential and Functional Equations.Academic Press, New York, 1972. Zbl 0253.49001, MR 0372708
Reference: [35] Young L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations.Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, (1937), 212-234. Zbl 0019.21901
Reference: [36] Young L.C.: Necessary conditions in the calculus of variations.Acta Math. 69, (1938), 239-258. Zbl 0019.26702, MR 1555440, 10.1007/BF02547714
Reference: [37] Young L.C.: Generalized surfaces in the calculus of variations.Ann. Math. 43, (1942), paгt I: 84-103, part II: 530-544. Zbl 0063.09081, MR 0006023, 10.2307/1968809
Reference: [38] Zowe J., Kurcyusz S.: Regularity and stability for the mathematical programming problem in Banach spaces.Appl. Math. Optim. 5, (1979), 49-62. Zbl 0401.90104, MR 0526427, 10.1007/BF01442543
.

Files

Files Size Format View
MathBohem_120-1995-4_8.pdf 1.425Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo