Full entry |
PDF
(0.5 MB)
Feedback

asymptotic behavior of solutions; one-dimensional motion of the viscous gas; compressible viscous gas

References:

[1] H. Beirão da Veiga: **An $L^p$-theory for the n-dimensional, stationary, compressible, Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions**. Comm. Math. Physics 109 (1987), 229-248. DOI 10.1007/BF01215222 | MR 0880415

[2] H. Beirão da Veiga: **Long time behavior for one-dimensional motion of a general barotropic viscous fluid**. Arch. Rat. Mech. Anal 108 (1989), 141-160. DOI 10.1007/BF01053460 | MR 1011555

[3] N. Itaya: **The existence and uniqueness of the solution of the equations describing compressible viscous fluid flow**. Proc. Jpn. Acad. 46 (1970), 379-382. DOI 10.3792/pja/1195520358 | MR 0364914 | Zbl 0207.39902

[4] N. Itaya: **A survey on the generalized Burger's equation with pressure model term**. J. Math. Kyoto Univ. 16 (1976), 223-240. MR 0402303

[5] Ya. Kaneľ: **On a model system of equations of one-dimensional gas motion**. Diff. Eqns. 4 (1968), 374-380.

[6] A. V. Kazhikhov: **Correctness "in the large" of initial-boundary-value problem for model system of equations of a viscous gas**. Din. Sploshnoi Sredy 21 (1975), 18-47. (In Russian.)

[7] A. V. Kazhikhov, V. B. Nikolaev: **On the correctness of boundary value problems for the equations of a viscous gas with a non-monotonic function of state**. Chislennye Metody Mekh. Sploshnoi Sredy 10 (1979), 77-84. (In Russian.) MR 0558830

[8] A. V. Kazhikhov, V. B. Nikolaev: **On the theory of the Navier-Stokes equations of a viscous gas with nonmonotone state function**. Soviet Math. Dokl. 20 (1979), 583-585. Zbl 0424.35074

[9] A. V. Kazhikhov, V. V. Shelukhin: **Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas**. J. Appl. Math. Mech. 41 (1977)), 273-282. DOI 10.1016/0021-8928(77)90011-9 | MR 0468593 | Zbl 0393.76043

[10] A. Matsumura: **Large time behavior of the solutions of a one-dimensional barotropic model of compressible viscous gas**. (preprint).

[11] A. Matsumura, T. Nishida: **Periodic solutions of a viscous gas equation**. Lec. Notes in Num. Appl. Anal. 10 (1989), 49-82. MR 1041375 | Zbl 0697.35015

[12] V. A. Solonnikov, A. V. Kazhikhov: **Existence theorems for the equations of motion of a compressible viscous fluid**. Ann. Rev. Fluid Mech. 13 (1981), 79-95. DOI 10.1146/annurev.fl.13.010181.000455 | Zbl 0492.76074

[13] A. Tani: **A survey on the one-dimensional compressible isentropic Navier-Stokes equations in a field of external forces**. (unpublished).

[14] S. Yanagi: **Global existence for one-dimensional motion of non-isentropic viscous fluids**. Math. Methods in Appl. Sci. 16 (1993), 609-624. DOI 10.1002/mma.1670160902 | MR 1240450 | Zbl 0780.35082

[15] A. A. Zlotnik: **On equations for one-dimensional motion of a viscous barotropic gas in the presence of a body force**. Sibir. Mat. Zh. 33 (1993), 62-79.