Previous |  Up |  Next

Article

Title: Asymptotic behavior of the solutions to a one-dimensional motion of compressible viscous fluids (English)
Author: Yanagi, Shigenori
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 4
Year: 1995
Pages: 431-443
Summary lang: English
.
Category: math
.
Summary: We study the one-dimensional motion of the viscous gas represented by the system $v_t-u_x = 0$, $ u_t+ p(v)_x = \mu(u_x/v)_x + f \left( \int_0^xv\dd x,t \right)$, with the initial and the boundary conditions $(v(x,0), u(x,0)) = (v_0(x), u_0(x))$, $u(0,t) = u(X,t) = 0$. We are concerned with the external forces, namely the function $f$, which do not become small for large time $t$. The main purpose is to show how the solution to this problem behaves around the stationary one, and the proof is based on an elementary $L^2$-energy method. (English)
Keyword: asymptotic behavior of solutions
Keyword: one-dimensional motion of the viscous gas
Keyword: compressible viscous gas
MSC: 35B40
MSC: 35Q30
MSC: 35Q35
MSC: 76N10
MSC: 76N15
idZBL: Zbl 0845.35084
idMR: MR1415090
DOI: 10.21136/MB.1995.126088
.
Date available: 2009-09-24T21:13:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126088
.
Reference: [1] H. Beirão da Veiga: An $L^p$-theory for the n-dimensional, stationary, compressible, Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions.Comm. Math. Physics 109 (1987), 229-248. MR 0880415, 10.1007/BF01215222
Reference: [2] H. Beirão da Veiga: Long time behavior for one-dimensional motion of a general barotropic viscous fluid.Arch. Rat. Mech. Anal 108 (1989), 141-160. MR 1011555, 10.1007/BF01053460
Reference: [3] N. Itaya: The existence and uniqueness of the solution of the equations describing compressible viscous fluid flow.Proc. Jpn. Acad. 46 (1970), 379-382. Zbl 0207.39902, MR 0364914, 10.3792/pja/1195520358
Reference: [4] N. Itaya: A survey on the generalized Burger's equation with pressure model term.J. Math. Kyoto Univ. 16 (1976), 223-240. MR 0402303, 10.1215/kjm/1250522971
Reference: [5] Ya. Kaneľ: On a model system of equations of one-dimensional gas motion.Diff. Eqns. 4 (1968), 374-380.
Reference: [6] A. V. Kazhikhov: Correctness "in the large" of initial-boundary-value problem for model system of equations of a viscous gas.Din. Sploshnoi Sredy 21 (1975), 18-47. (In Russian.)
Reference: [7] A. V. Kazhikhov, V. B. Nikolaev: On the correctness of boundary value problems for the equations of a viscous gas with a non-monotonic function of state.Chislennye Metody Mekh. Sploshnoi Sredy 10 (1979), 77-84. (In Russian.) MR 0558830
Reference: [8] A. V. Kazhikhov, V. B. Nikolaev: On the theory of the Navier-Stokes equations of a viscous gas with nonmonotone state function.Soviet Math. Dokl. 20 (1979), 583-585. Zbl 0424.35074
Reference: [9] A. V. Kazhikhov, V. V. Shelukhin: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas.J. Appl. Math. Mech. 41 (1977)), 273-282. Zbl 0393.76043, MR 0468593, 10.1016/0021-8928(77)90011-9
Reference: [10] A. Matsumura: Large time behavior of the solutions of a one-dimensional barotropic model of compressible viscous gas.(preprint).
Reference: [11] A. Matsumura, T. Nishida: Periodic solutions of a viscous gas equation.Lec. Notes in Num. Appl. Anal. 10 (1989), 49-82. Zbl 0697.35015, MR 1041375
Reference: [12] V. A. Solonnikov, A. V. Kazhikhov: Existence theorems for the equations of motion of a compressible viscous fluid.Ann. Rev. Fluid Mech. 13 (1981), 79-95. Zbl 0492.76074, 10.1146/annurev.fl.13.010181.000455
Reference: [13] A. Tani: A survey on the one-dimensional compressible isentropic Navier-Stokes equations in a field of external forces.(unpublished).
Reference: [14] S. Yanagi: Global existence for one-dimensional motion of non-isentropic viscous fluids.Math. Methods in Appl. Sci. 16 (1993), 609-624. Zbl 0780.35082, MR 1240450, 10.1002/mma.1670160902
Reference: [15] A. A. Zlotnik: On equations for one-dimensional motion of a viscous barotropic gas in the presence of a body force.Sibir. Mat. Zh. 33 (1993), 62-79.
.

Files

Files Size Format View
MathBohem_120-1995-4_9.pdf 630.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo