Previous |  Up |  Next


Title: Normal spaces and the Lusin-Menchoff property (English)
Author: Pyrih, Pavel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 3
Year: 1997
Pages: 295-299
Summary lang: English
Category: math
Summary: We study the relation between the Lusin-Menchoff property and the $F_\sigma$-"semiseparation" property of a fine topology in normal spaces. Three examples of normal topological spaces having the $F_\sigma$-"semiseparation" property without the Lusin-Menchoff property are given. A positive result is obtained in the countable compact space. (English)
Keyword: fine topology
Keyword: finely separated sets
Keyword: Lusin-Menchoff property
Keyword: normal space
MSC: 26A03
MSC: 31C40
MSC: 54A10
idZBL: Zbl 0897.54001
idMR: MR1600656
DOI: 10.21136/MB.1997.126145
Date available: 2009-09-24T21:26:38Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] Laczkovich M.: Separation properties of some subclasses of Baire 1 functions.Acta Math. Acad. Sci. Hungar. 26 (1975), 405-421. Zbl 0316.54014, MR 0404543, 10.1007/BF01902349
Reference: [2] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory.Lecture Notes in Mathematics 1189, Springer-Verlag, Berlin, 1986. MR 0861411
Reference: [3] Lukeš J., Zajíček L.: The insertion of $G_{\delta}$ sets and fine topologies.Comment. Math. Univ. Carolin. 18 (1977), 101-104. Zbl 0355.26003, MR 0447497
Reference: [4] Malý J.: A note on separation of sets by approximately continuous functions.Comment. Math. Univ. Carolin. 20 (1979), 579-588. Zbl 0406.26004, MR 0539552
Reference: [5] Pyrih P.: Separation of finely closed sets by finely open sets.Real Anal. Exchange 21 (1995/96), no. 1, 345-348. MR 1377547
Reference: [6] Tall F.D.: Normal subspaces of the density topology.Pacific J. Math. 75 (1978), 579-588. Zbl 0345.54015, MR 0500830, 10.2140/pjm.1978.75.579


Files Size Format View
MathBohem_122-1997-3_8.pdf 316.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo