Previous |  Up |  Next


outerplanar graph; generalized outerplanar graph
In this work, we get a combinatorial characterization for maximal generalized outerplanar graphs (mgo graphs). This result yields a recursive algorithm testing whether a graph is a mgo graph or not.
[1] F. Hаrаry: Graph Theory. Addison Wesley, Reading Mass., 1969. MR 0256911
[2] J. E. Hopcroft аnd R. E. Tаrjаn: Dividing a graph into triconnected components. SIAM J. Comput. 2 (1973), 135-158. DOI 10.1137/0202012 | MR 0327391
[3] M. C. vаn Lier аnd R. H. J. M. Otten: C.A.D. of masks and wiring. T. H. Rept. 74-E-44, Dept. Elect. Engrg. Eindhoven University of Technology.
[4] S. Mitchell: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inform. Process. Lett. 9 (1979), 229-232. DOI 10.1016/0020-0190(79)90075-9 | MR 0552536 | Zbl 0444.68055
[5] T. Nishizeki N. Chibа: Planar Graphs: Theory and Algoгithms. North-Holland, Amsterdam, 1969.
[6] J. Sedláček: On a generalization of outerplanar graphs. Časopis Pěst. Mat. 113 (1988) 213-218. MR 0949046
[7] W. T. Tutte: A theory of 3-connected graphs. Indag. Math. 23 (1961), 441-455. MR 0140094 | Zbl 0101.40903
Partner of
EuDML logo