Previous |  Up |  Next

Article

Title: A linear algorithm to recognize maximal generalized outerplanar graphs (English)
Author: Cáceres, José
Author: Márquez, Alberto
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 3
Year: 1997
Pages: 225-230
Summary lang: English
.
Category: math
.
Summary: In this work, we get a combinatorial characterization for maximal generalized outerplanar graphs (mgo graphs). This result yields a recursive algorithm testing whether a graph is a mgo graph or not. (English)
Keyword: outerplanar graph
Keyword: generalized outerplanar graph
MSC: 05C10
MSC: 05C75
MSC: 05C85
idZBL: Zbl 0898.05017
idMR: MR1600871
DOI: 10.21136/MB.1997.126148
.
Date available: 2009-09-24T21:25:32Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126148
.
Reference: [1] F. Hаrаry: Graph Theory.Addison Wesley, Reading Mass., 1969. MR 0256911
Reference: [2] J. E. Hopcroft аnd R. E. Tаrjаn: Dividing a graph into triconnected components.SIAM J. Comput. 2 (1973), 135-158. MR 0327391, 10.1137/0202012
Reference: [3] M. C. vаn Lier аnd R. H. J. M. Otten: C.A.D. of masks and wiring.T. H. Rept. 74-E-44, Dept. Elect. Engrg. Eindhoven University of Technology.
Reference: [4] S. Mitchell: Linear algorithms to recognize outerplanar and maximal outerplanar graphs.Inform. Process. Lett. 9 (1979), 229-232. Zbl 0444.68055, MR 0552536, 10.1016/0020-0190(79)90075-9
Reference: [5] T. Nishizeki N. Chibа: Planar Graphs: Theory and Algoгithms.North-Holland, Amsterdam, 1969.
Reference: [6] J. Sedláček: On a generalization of outerplanar graphs.Časopis Pěst. Mat. 113 (1988) 213-218. MR 0949046
Reference: [7] W. T. Tutte: A theory of 3-connected graphs.Indag. Math. 23 (1961), 441-455. Zbl 0101.40903, MR 0140094
.

Files

Files Size Format View
MathBohem_122-1997-3_1.pdf 437.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo