Previous |  Up |  Next

Article

Title: Convergence $l$-groups with zero radical (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 1
Year: 1997
Pages: 63-73
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate abelian convergence $\ell$-groups with zero radical such that each bounded sequence has a convergent subsequence. (English)
Keyword: completely subdirect product
Keyword: convergence $\ell$-group
Keyword: $b$-sequential compactness
MSC: 06F15
MSC: 06F20
MSC: 20F60
MSC: 22C05
idZBL: Zbl 0890.06011
idMR: MR1446400
DOI: 10.21136/MB.1997.126180
.
Date available: 2009-09-24T21:22:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126180
.
Reference: [1] P. Conrad: Lateral completion of lattice ordered groups.Proc. London Math. Soc. 19 (1969), 444-480. MR 0244125, 10.1112/plms/s3-19.3.444
Reference: [2] P. Conrad: Lattice ordered groups.Tulane University, 1970. Zbl 0258.06011
Reference: [3] D. N. Dikranjan: Convergence groups: sequential compactness and generalizations.Rendinconti 1st. Math. Trieste 25 (1993), 141-173. Zbl 0846.54033, MR 1346320
Reference: [4] M. Harminc: Sequential convergences on abelian lattice ordered groups.Convergence Structures, Proc. Conf. Bechyne 1984, Math. Research 24 (1984), 153-158. MR 0835480
Reference: [5] M. Harminc J. Jakubík: Maximal convergences and minimal proper convergences in l-groups.Czechoslovak Math. J. 39 (1989), 631-640. MR 1017998
Reference: [6] J. Jakubík: Sequential convergences in l-groups without Urysohn's axiom.Czechoslovak Math. J. 42 (1992), 101-116. Zbl 0770.06008, MR 1152174
Reference: [7] F. Šik: Über subdirekte Summen geordneter Gruppen.Czechoslovak Math. J. 10 (1960), 400-424. MR 0123626
.

Files

Files Size Format View
MathBohem_122-1997-1_6.pdf 522.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo