Previous |  Up |  Next

Article

Title: Ein „merkwürdiges” Spektrum für nichtlineare Operatoren (German)
Title: A "strange" spectrum for nonlinear operators (English)
Author: Appell, Jürgen
Language: German
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 221-229
Summary lang: English
.
Category: math
.
Summary: We define a spectrum for Lipschitz continuous nonlinear operators in Banach spaces by means of a certain kind of "pseudo-adjoint" and study some of its properties. (English)
Keyword: nonlinear operator
Keyword: Lipschitz continuity
Keyword: pseudo-adjoint operator
Keyword: resolvent set
Keyword: spectrum
Keyword: eigenvalue
Keyword: generalized spectral radius
MSC: 47A10
MSC: 47A25
MSC: 47C99
MSC: 47H09
MSC: 47H12
MSC: 47H17
MSC: 47H99
MSC: 47J10
MSC: 47J25
idZBL: Zbl 0940.47053
idMR: MR1780693
DOI: 10.21136/MB.1999.126246
.
Date available: 2009-09-24T21:37:22Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126246
.
Reference: [1] Appell J., De Pascale E., Vignoli A.: A comparison of different spectra for nonlinear Operators.Nonlin. Anal. To appear. Zbl 0956.47035
Reference: [2] Appell J., Dörfner M.: Some spectral theory for nonlinear Operators.Nonlin. Anal. 28 (12) (1997), 1955-1976. Zbl 0876.47042, MR 1436365, 10.1016/S0362-546X(96)00040-5
Reference: [3] Cacuci D. G., Perez R. B., Protopopescu V.: Duals and propagators: A canonical formalism for nonlinear equations.J. Math. Phys. 29 (1988), 353-361. Zbl 0695.35221, MR 0927019, 10.1063/1.528075
Reference: [4] Caselles V.: Duality and nonlinear equations governed by accretive Operators.Publ. Math. Fac. Sci. Besancon 12 (1990), 7-25. Zbl 0766.47029, MR 1034994
Reference: [5] Edmunds D.E., Webb J. R. L.: Remarks on nonlinear spectral theory.Boll. Un. Mat. Ital. B 2 (1983), 377-390. MR 0698500
Reference: [6] Feng W.: A new spectral theory for nonlinear Operators and its applications.Abstr. Appl. Anal. 2 (1997), 163-183. Zbl 0952.47047, MR 1604177, 10.1155/S1085337597000328
Reference: [7] Furi M., Martelli M., Vignoli A.: Contributions to the spectral theory for nonlinear Operators in Banach Spaces.Ann. Mat. Pura Appl. 118 (1978), 229-294. Zbl 0409.47043, MR 0533609
Reference: [8] Kachurovskij R. I.: Regular points, spectrum and eigenfunctions of nonlinear operators.Dokl. Akad. Nauk 188 (1969), 274-277. (Russian, Engl, transl.: Soviet Math. Dokl. 10 (1969), 1101-1105.) Zbl 0197.40402, MR 0251599
Reference: [9] Maddox I. J., Wickstead A. W.: The spectrum of uniformly Lipschitz mappings.Proc. Roy. Irish Acad. A 89 (1989), 101-114. Zbl 0661.47048, MR 1021228
Reference: [10] Nashed M. Z.: Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analysis.Nonlinear Functional Analysis and Applications (L. B. Rail, ed.). Academic Press, New York, 1971. MR 0276840
Reference: [11] Neuberger J. W.: Existence of a spectrum for nonlinear transformations.Pacific J. Math. 31 (1969), 157-159. Zbl 0182.47203, MR 0259696, 10.2140/pjm.1969.31.157
Reference: [12] Rhodius A.: Der numerische Wertebereich und die Lösbarkeit linearer und nichtlinearer Gleichungen.Math. Nachr. 79 (1977), 343-360. MR 0637086, 10.1002/mana.19770790137
Reference: [13] Shutjaev V. P.: On calculation of a functional in a nonlinear problem using an adjoint equation.Zh. Vychisl. Mat. Mat. Fiz, 31 (1991), 1278-1288. (Russian, Engl. transl.: J. Comput. Math. Math. Phys. 31 (1991), 8-16.) MR 1145198
Reference: [14] Trenogin V. A.: Operators which are adjoint to nonlinear operators in weakly metric spaces.Trudy Mezhd. Konf. 175-let. P. L. Chebysheva, Izdat. MGU 1 (1996), 335-337, (Russian.)
Reference: [15] Trenogin V. A.: Properties of resolvent sets and estimates for the resolvent of nonlinear operators.Dokl. Akad. Nauk 359 (1998), 24-26. (Russian.) MR 1668399
Reference: [16] Yamamuro S.: The adjoints of differentiable mappings.J. Austral. Math. Soc. 8 (1968), 397-409. Zbl 0184.17802, MR 0233202, 10.1017/S1446788700006091
.

Files

Files Size Format View
MathBohem_124-1999-2_9.pdf 1.398Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo