Title:
|
Locally regular graphs (English) |
Author:
|
Zelinka, Bohdan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
125 |
Issue:
|
4 |
Year:
|
2000 |
Pages:
|
481-484 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A graph $G$ is called locally $s$-regular if the neighbourhood of each vertex of $G$ induces a subgraph of $G$ which is regular of degree $s$. We study graphs which are locally $s$-regular and simultaneously regular of degree $r$. (English) |
Keyword:
|
locally regular graph |
Keyword:
|
regular graph |
MSC:
|
05C75 |
idZBL:
|
Zbl 0963.05119 |
idMR:
|
MR1802296 |
DOI:
|
10.21136/MB.2000.126271 |
. |
Date available:
|
2009-09-24T21:45:55Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126271 |
. |
Reference:
|
[1] : Theory of Graphs and its Applications.Proc. Symp. Smolenice, June 1963, Academia, Praha, 1964. |
Reference:
|
[2] G. Chartrand R. J. Gould A. D. Polimeni: A note on locally connected and hamiltonian-connected graphs.Israel Math. J. 33 (1979), 5-8. MR 0571579, 10.1007/BF02760528 |
Reference:
|
[3] D. Fronček: Locally linear graphs.Math. Slovaca 39 (1989), 3-6. MR 1016323 |
Reference:
|
[4] D. J. Oberly D. P. Sumner: Every connected, locally connected nontrivial graph with no induced claw is hamiltonian.J. Graph Theory 3 (1979), 351-356. MR 0549691, 10.1002/jgt.3190030405 |
Reference:
|
[5] J. Sedláček: Local properties of graphs.Časopis Pěst. Mat. 106 (1981), 290-298. MR 0629727 |
. |