Previous |  Up |  Next

Article

Title: Congruence restrictions on axes (English)
Author: Duda, Jaromír
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 3
Year: 1992
Pages: 251-258
Summary lang: English
.
Category: math
.
Summary: We give Mal’cev conditions for varieties 4V4 whose congruences on the product $A\times B, A, B\in V$, are determined by their restrictions on the axes in $A\times B$. (English)
Keyword: Cartesian product
Keyword: traces on axes
Keyword: Mal’tsev conditions
Keyword: congruence
Keyword: axis in the product
Keyword: variety of algebras
MSC: 08A30
MSC: 08B05
idZBL: Zbl 0777.08003
idMR: MR1184538
DOI: 10.21136/MB.1992.126285
.
Date available: 2009-09-24T20:53:14Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126285
.
Reference: [1] B. Csákány: Characterizations of regular varieties.Acta Sci. Math. (Szeged) 31 (1970), 187-189. MR 0272697
Reference: [2] B. A. Davey K. R. Miles V. J. Schumann: Quasiidentities, Mal'cev conditions and congruence regularity.Acta Sci. Math. (Szeged) 51 (1987), 39-55. MR 0911557
Reference: [3] J. Duda: On two schemes applied to Mal'cev type theorems.Ann. Univ. Sci. Budapest, Sectio Mathematica 26 (1983), 39-45. Zbl 0518.08002, MR 0719774
Reference: [4] J. Duda: Mal'cev conditions for varieties of subregular algebras.Acta Sci. Math. (Szeged) 51 (1987), 329-334. Zbl 0647.08002, MR 0940937
Reference: [5] J. Duda: Diagonal elements and compatible relations in the square of algebras.Czechoslovak Math. Journal (to appear).
Reference: [6] K. Fichtner: Varieties of universal algebras with ideals.Mat. Sbornik 75 no. 117 (1968), 445-453. (In Russian.) Zbl 0213.29602, MR 0222001
Reference: [7] G. A. Eraser A. Horn: Congruence relations in direct products.Proc. Amer. Math. Soc. 26 (1970), 390-394. MR 0265258, 10.1090/S0002-9939-1970-0265258-1
Reference: [8] G. Grätzer: Two Mal'cev-type theorems in universal algebra.J. Comb. Theory 8 (1970), 334-342. Zbl 0194.01401, MR 0279022, 10.1016/S0021-9800(70)80086-2
Reference: [9] J. Hagemann: On regular and weakly regular congruences.Preprint Nr. 75, TH-Darmstadt, 1973.
Reference: [10] J. Timm: On regular algebras.Colloq. Math. Soc. János Bolyai 17. Contributions to universal algebra, Szeged (1975), pp. 503-514. MR 0491418
Reference: [11] R. Wille: Kongruenzklassengeometrien.Lecture Notes in Mathematics 113 (1970), Springer-Verlag, Berlin. Zbl 0191.51403, MR 0262149
.

Files

Files Size Format View
MathBohem_117-1992-3_3.pdf 1.003Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo