Previous |  Up |  Next

Article

Title: On $\alpha$-continuous functions (English)
Author: Janković, Dragan S.
Author: Konstadilaki-Savvopoulou, Ch.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 3
Year: 1992
Pages: 259-270
Summary lang: English
.
Category: math
.
Summary: Classes of functions continuous in various senses, in particular $\theta$-continuous, $\alpha$-continuous, feeblz continuous a.o., and relations between the classes, are studied. (English)
Keyword: $\theta$-continuous functions
Keyword: $\alpha$-continuous functions
Keyword: feebly continuous functions
Keyword: nearly feebly open functions
Keyword: feeble continuity
Keyword: $\alpha$-continuity
Keyword: $\theta$-continuity
Keyword: weak continuity
Keyword: $\alpha$-irresoluteness
MSC: 26A15
MSC: 54C08
idZBL: Zbl 0802.54005
idMR: MR1184539
DOI: 10.21136/MB.1992.126287
.
Date available: 2009-09-24T20:53:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126287
.
Reference: [1] D. Andrijevic: Semi-preopen sets.Mat. Vesnik 38 (1986), 24-32. Zbl 0604.54002
Reference: [2] H. H. Corson, E. Michael: Metrizability of certain countable unions.Illinois J.Math. 8 (1964), 351-360. Zbl 0127.13203, MR 0170324, 10.1215/ijm/1256059678
Reference: [3] S. G. Crossley, S. K. Hildebrand: Semi-topological properties.Fund. Math. 14 (1972), 233-254. Zbl 0206.51501, MR 0301690, 10.4064/fm-74-3-233-254
Reference: [4] R. F. Dickman, Jr. J. R. Porter, and L. R. Rubin: Completely regular absolutes and projective objects.Pacific J. Math. 94 (1981), 277-295. MR 0628580, 10.2140/pjm.1981.94.277
Reference: [5] J. Doboš: A note on the invariance of Baire spaces under mappings.Časopis pěst. mat. 108 (1983), 409-411. MR 0727538
Reference: [6] S. Fomin: Extensions of topological spaces.Ann. Math. 44 (1943), 471-480. Zbl 0061.39601, MR 0008686, 10.2307/1968976
Reference: [7] Z. Frolík: Remarks concerning the invariance of Baire spaces under mappings.Czech. Math. J. 11 (1961), 381-385. MR 0133098
Reference: [8] T. R. Hamlett, D. Rose: * -topological properties.Internat. J. of Math. and Math. Sci., to appear. MR 1068014
Reference: [9] R. C. Haworth, R. A. McCoy: Baire spaces.Dissert. Math. 141 (1977), 1-73. Zbl 0344.54001, MR 0431104
Reference: [10] D. S. Janković, S. K. Hildebrand: A note on semihomeomorphisms.Math. Cronicle 16 (1987), 65-68. MR 0944619
Reference: [11] K. Kuratowski: Topology. Vol. I.Academic Press, New York, 1966. Zbl 0158.40901, MR 0217751
Reference: [12] N. Levine: A decomposition of continuity in topological spaces.Amer. Math. Monthly 68 (1961), 44-46. Zbl 0100.18601, MR 0126252, 10.2307/2311363
Reference: [13] N. Levine: Semi-open sets and semi-continuity in topological spaces.Amer. Math. Monthly 10 (1963), 36-41. Zbl 0113.16304, MR 0166752, 10.1080/00029890.1963.11990039
Reference: [14] S. N. Maheshwari, S. S. Thakur: On $\alpha$-irresolute mappings.Tamkang J. Math. 11 (1980), 209-214. MR 0696921
Reference: [15] A. S. Mashhour I. A. Hasanein S. N. El-Deeb: $\alpha$-continuous and $\alpha$-open mappings.Acta Math. Hung. 41 (1983), 213-218. MR 0703734, 10.1007/BF01961309
Reference: [16] J. Mioduszewski, and L. Rudolf: H-closed and extremally disconnected Hausdorff spaces.Dissert. Math. 66 (1969), 1-55. MR 0256353
Reference: [17] T. Neubrunn: Quasi-continuity.Real Anal. Exchange 14 (1988-89), 259-306. MR 0995972
Reference: [18] O. Njastad: On some classes of nearly open sets.Pacific J. Math. 15 (1965), 961-970. Zbl 0137.41903, MR 0195040, 10.2140/pjm.1965.15.961
Reference: [19] T. Noiri: A function which preserves connected spaces.Časopis Pěst. Mat. 101 (1982), 393-396. Zbl 0511.54008, MR 0683820
Reference: [20] T. Noiri: On $\alpha$-continuous functions.Časopis Pěst. Mat. 109(1984), 118-126. Zbl 0544.54009, MR 0744869
Reference: [21] J. R. Porter, R. G. Woods: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, 1988. Zbl 0652.54016, MR 0918341
Reference: [22] V. Pták: Completeness and the open mapping theorem.Bull. Soc. Math. France 86 (1958), 41-74. MR 0105606, 10.24033/bsmf.1498
Reference: [23] I. L. Reilly, M. K. Vamanamurthy: Connectedness and strong semi-continuity.Časopis Pěst. Mat. 109 (1984), 261-265. Zbl 0553.54005, MR 0755590
Reference: [24] L. Rudolf: Extending maps from dense subspaces.Fund. Math. 77 (1972), 171-190. Zbl 0246.54014, MR 0320993, 10.4064/fm-77-2-171-190
.

Files

Files Size Format View
MathBohem_117-1992-3_4.pdf 1.646Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo