Previous |  Up |  Next

Article

Title: Three Mal'cev Type Theorems and their Application (English)
Author: Mederly, Peter
Language: English
Journal: Matematický časopis
ISSN: 0025-5173
Volume: 25
Issue: 1
Year: 1975
Pages: 83-95
.
Category: math
.
MSC: 06C05
MSC: 08A15
MSC: 08B99
idZBL: Zbl 0302.08003
idMR: MR0384650
.
Date available: 2009-09-25T08:34:39Z
Last updated: 2012-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/127038
.
Reference: [1] DAY A.: A characterization of modularity for congruence lattices of algebras.Canad. math. Bull., 12, 1969, 167-173. Zbl 0181.02302, MR 0248063
Reference: [2] DAY A.: p-modularity implies modularity in equational classes.(preprint). Zbl 0288.06012, MR 0354497
Reference: [3] GRÄTZER G.: Universal algebra.Van Nostrand, Princeton N. J., 1968. MR 0248066
Reference: [4] GEDEONOVÁ E.: A characterization of p-modularity for congruence lattices of algebras.Acta Fac. Rerum Natur. Univ. Comenian. Math., 28, 1972, 99-106. MR 0313169
Reference: [5] HUHN A.: Schwach distributive Verbände.Acta Fac. Rerum Natur. Univ. Comenian. Math. Mim. č., 1971, 51-56. Zbl 0385.06010, MR 0382106
Reference: [6] JÓNSSON B.: Algebras whose congruence lattices are distributive.Math. Scand., 21, 1967, 110-121. MR 0237402
Reference: [7] McKENZIE R.: Equational bases and nonmodular lattice varieties.Trans. Amer. math. Soc, 174, 1972, 1-43. MR 0313141
Reference: [8] MEDERLY P.: Mal'cev type conditions for equational classes of algebras.(Slovak), Thesis, Komenský Univ., Bratislava, 1971.
Reference: [9] WILLE R.: Kongruenzklassengeometrien.Lecture notes in Math., 113, 1970. Zbl 0191.51403, MR 0262149
.

Files

Files Size Format View
MathSlov_25-1975-1_8.pdf 1.033Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo