Previous |  Up |  Next

Article

Title: Metrization problem for linear connections and holonomy algebras (English)
Author: Vanžurová, Alena
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 511-521
Summary lang: English
.
Category: math
.
Summary: We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers). (English)
Keyword: manifold
Keyword: linear connection
Keyword: pseudo-Riemannian metric
Keyword: holonomy group
Keyword: holonomy algebra
MSC: 53B05
MSC: 53B20
idZBL: Zbl 1212.53021
idMR: MR2501581
.
Date available: 2009-01-29T09:16:26Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127117
.
Reference: [1] Anastasiei, M.: Metrizable linear connections in vector bundles.Publ. Math. Debrecen 62 (3-4) (2003), 277–287. MR 2008096
Reference: [2] Cheng, K. S., Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds.Chinese J. Phys. 16 (1978), 228–232.
Reference: [3] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization.Proc. London Math. Soc. 8 (1922), 19–23.
Reference: [4] Gołab, S.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume.Tensor, N. S. 9 (1959), 132–137.
Reference: [5] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume.Tensor, N. S. 14 (1963), 132–137. Zbl 0122.40501, MR 0161263
Reference: [6] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil.Tensor, N.S. 17 (1966), 28–43. MR 0195021
Reference: [7] Jakubowicz, A.: Über die Metrisierbarkeit der vier-dimensionalen affin-zusammenhängenden Räume.Tensor, N.S. 18 (1967), 259–270. MR 0215253
Reference: [8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II.Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
Reference: [9] Kowalski, O.: On regular curvature structures.Math. Z. 125 (1972), 129–138. Zbl 0234.53024, MR 0295250, 10.1007/BF01110924
Reference: [10] Kowalski, O.: Metrizability of affine connections on analytic manifolds.Note Mat. 8 (1) (1988), 1–11. Zbl 0699.53038, MR 1050506
Reference: [11] Levine, J.: Invariant characterization of two-dimensional affine and metric spaces.Duke Math. J. 14 (1948), 69–77. MR 0025236
Reference: [12] Schmidt, B. G.: Conditions on a connection to be a metric connection.Comm. Math. Phys. 29 (1973), 55–59. MR 0322726, 10.1007/BF01661152
Reference: [13] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds.Chinese J. Phys. 19 (6) (1991), 529–532.
Reference: [14] Vanžurová, A.: Linear connections on two-manifolds and SODE’s.Proc. Conf. Aplimat 2007 (Bratislava, Slov. Rep.), Part II, 2007, pp. 325–332.
Reference: [15] Vilimová, Z.: The problem of metrizability of linear connections.Master's thesis, Opava, 2004, supervisor: O. Krupková.
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_12.pdf 522.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo