Title:
|
Metrization problem for linear connections and holonomy algebras (English) |
Author:
|
Vanžurová, Alena |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
44 |
Issue:
|
5 |
Year:
|
2008 |
Pages:
|
511-521 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers). (English) |
Keyword:
|
manifold |
Keyword:
|
linear connection |
Keyword:
|
pseudo-Riemannian metric |
Keyword:
|
holonomy group |
Keyword:
|
holonomy algebra |
MSC:
|
53B05 |
MSC:
|
53B20 |
idZBL:
|
Zbl 1212.53021 |
idMR:
|
MR2501581 |
. |
Date available:
|
2009-01-29T09:16:26Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127117 |
. |
Reference:
|
[1] Anastasiei, M.: Metrizable linear connections in vector bundles.Publ. Math. Debrecen 62 (3-4) (2003), 277–287. MR 2008096 |
Reference:
|
[2] Cheng, K. S., Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds.Chinese J. Phys. 16 (1978), 228–232. |
Reference:
|
[3] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization.Proc. London Math. Soc. 8 (1922), 19–23. |
Reference:
|
[4] Gołab, S.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume.Tensor, N. S. 9 (1959), 132–137. |
Reference:
|
[5] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume.Tensor, N. S. 14 (1963), 132–137. Zbl 0122.40501, MR 0161263 |
Reference:
|
[6] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil.Tensor, N.S. 17 (1966), 28–43. MR 0195021 |
Reference:
|
[7] Jakubowicz, A.: Über die Metrisierbarkeit der vier-dimensionalen affin-zusammenhängenden Räume.Tensor, N.S. 18 (1967), 259–270. MR 0215253 |
Reference:
|
[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II.Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991. |
Reference:
|
[9] Kowalski, O.: On regular curvature structures.Math. Z. 125 (1972), 129–138. Zbl 0234.53024, MR 0295250, 10.1007/BF01110924 |
Reference:
|
[10] Kowalski, O.: Metrizability of affine connections on analytic manifolds.Note Mat. 8 (1) (1988), 1–11. Zbl 0699.53038, MR 1050506 |
Reference:
|
[11] Levine, J.: Invariant characterization of two-dimensional affine and metric spaces.Duke Math. J. 14 (1948), 69–77. MR 0025236 |
Reference:
|
[12] Schmidt, B. G.: Conditions on a connection to be a metric connection.Comm. Math. Phys. 29 (1973), 55–59. MR 0322726, 10.1007/BF01661152 |
Reference:
|
[13] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds.Chinese J. Phys. 19 (6) (1991), 529–532. |
Reference:
|
[14] Vanžurová, A.: Linear connections on two-manifolds and SODE’s.Proc. Conf. Aplimat 2007 (Bratislava, Slov. Rep.), Part II, 2007, pp. 325–332. |
Reference:
|
[15] Vilimová, Z.: The problem of metrizability of linear connections.Master's thesis, Opava, 2004, supervisor: O. Krupková. |
. |