Previous |  Up |  Next

Article

Title: A generalization of Thom’s transversality theorem (English)
Author: Vokřínek, Lukáš
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 523-533
Summary lang: English
.
Category: math
.
Summary: We prove a generalization of Thom’s transversality theorem. It gives conditions under which the jet map $f_*|_Y\colon Y\subseteq J^r(D,M)\rightarrow J^r(D,N)$ is generically (for $f\colon M\rightarrow N$) transverse to a submanifold $Z\subseteq J^r(D,N)$. We apply this to study transversality properties of a restriction of a fixed map $g\colon M\rightarrow P$ to the preimage $(j^sf)^{-1}(A)$ of a submanifold $A\subseteq J^s(M,N)$ in terms of transversality properties of the original map $f$. Our main result is that for a reasonable class of submanifolds $A$ and a generic map $f$ the restriction $g|_{(j^sf)^{-1}(A)}$ is also generic. We also present an example of $A$ where the theorem fails. (English)
Keyword: transversality
Keyword: residual
Keyword: generic
Keyword: restriction
Keyword: fibrewise singularity
MSC: 57R35
MSC: 57R45
MSC: 58A20
idZBL: Zbl 1212.57010
idMR: MR2501582
.
Date available: 2009-01-29T09:16:29Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127118
.
Reference: [1] Golubitsky, M., Guillemin, V.: Stable mappings and their singularities.Grad. Texts in Math., Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. Zbl 0294.58004, MR 0341518, 10.1007/978-1-4615-7904-5
Reference: [2] Hirsch, M. W.: Differential topology.Grad. Texts in Math., No. 33, Springer-Verlag, New York-Heidelberg, 1976. Zbl 0356.57001, MR 0448362
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_13.pdf 500.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo