Previous |  Up |  Next

Article

Title: Weakly irreducible subgroups of $\mbox {Sp}(1,n+1)$ (English)
Author: Bezvitnaya, Natalia I.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 341-352
Summary lang: English
.
Category: math
.
Summary: Connected weakly irreducible not irreducible subgroups of $\mbox {Sp}(1,n+1)\subset \mbox {SO}(4,4n+4)$ that satisfy a certain additional condition are classified. This will be used to classify connected holonomy groups of pseudo-hyper-Kählerian manifolds of index 4. (English)
Keyword: pseudo-hyper-Kählerian manifold of index 4
Keyword: weakly irreducible holonomy group
MSC: 53C29
MSC: 53C50
idZBL: Zbl 1212.53071
idMR: MR2501571
.
Date available: 2009-01-29T09:15:47Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127121
.
Reference: [1] Alekseevsky, D. V.: Homogeneous Riemannian manifolds of negative curvature.Mat. Sb. (N.S.) 96 (138) (1975), 93–117. MR 0362145
Reference: [2] Ambrose, W., Singer, I. M.: A theorem on holonomy.Trans. Amer. Math. Soc. 75 (1953), 428–443. Zbl 0052.18002, MR 0063739, 10.1090/S0002-9947-1953-0063739-1
Reference: [3] Berard Bergery, L., Ikemakhen, A.: On the holonomy of Lorentzian manifolds.Proc. Sympos. Pure Math. 54 (1993), 27–40. Zbl 0807.53014, MR 1216527
Reference: [4] Berger, M.: Sur les groupers d’holonomie des variétés àconnexion affine et des variétés riemanniennes.Bull. Soc. Math. France 83 (1955), 279–330. MR 0079806
Reference: [5] Besse, A. L.: Einstein Manifolds.Springer-Verlag, Berlin-Heidelberg-New York, 1987. Zbl 0613.53001, MR 0867684
Reference: [6] Bryant, R.: Metrics with exceptional holonomy.Ann. of Math. (2) 126 (1987), 525–576. Zbl 0637.53042, MR 0916718
Reference: [7] Galaev, A. S.: Classification of connected holonomy groups for pseudo-Kählerian manifolds of index 2.arXiv:math.DG/0405098.
Reference: [8] Galaev, A. S.: Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidian spaces and Lorentzian holonomy groups.Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 87–97. MR 2287128
Reference: [9] Galaev, A. S.: Metrics that realize all Lorentzian holonomy algebras.Internat. J. Geom. Meth. Modern Phys. 3 (5, 6) (2006), 1025–1045. Zbl 1112.53039, MR 2264404, 10.1142/S0219887806001570
Reference: [10] Joyce, D.: Compact manifolds with special holonomy.Oxford University Press, 2000. Zbl 1027.53052, MR 1787733
Reference: [11] Leistner, T.: On the classification of Lorentzian holonomy groups.J. Differential Geom. 76 (3) (2007), 423–484. Zbl 1129.53029, MR 2331527
Reference: [12] Wu, H.: Holonomy groups of indefinite metrics.Pacific J. Math. 20 (1967), 351–382. Zbl 0149.39603, MR 0212740, 10.2140/pjm.1967.20.351
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_2.pdf 503.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo