Previous |  Up |  Next

Article

Title: On the non-invariance of span and immersion co-dimension for manifolds (English)
Author: Crowley, Diarmuid J.
Author: Zvengrowski, Peter D.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 353-365
Summary lang: English
.
Category: math
.
Summary: In this note we give examples in every dimension $m \ge 9$ of piecewise linearly homeomorphic, closed, connected, smooth $m$-manifolds which admit two smoothness structures with differing spans, stable spans, and immersion co-dimensions. In dimension $15$ the examples include the total spaces of certain $7$-sphere bundles over $S^8$. The construction of such manifolds is based on the topological variance of the second Pontrjagin class: a fact which goes back to Milnor and which was used by Roitberg to give examples of span variation in dimensions $m \ge 18$. We also show that span does not vary for piecewise linearly homeomorphic smooth manifolds in dimensions less than or equal to $8$, or under connected sum with a smooth homotopy sphere in any dimension. Finally, we use results of Morita to show that in all dimensions $m \ge 19$ there are topological manifolds admitting two piecewise linear structures having different $PL$-spans. (English)
Keyword: span
Keyword: stable span
Keyword: manifolds
Keyword: non-invariance
MSC: 57Q25
MSC: 57R20
MSC: 57R25
MSC: 57R55
idZBL: Zbl 1212.57009
idMR: MR2501571
.
Date available: 2009-01-29T09:15:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127122
.
Reference: [1] Atiyah, M.: Thom complexes.Proc. London Math. Soc. 11 (3) (1961), 291–310. Zbl 0124.16301, MR 0131880
Reference: [2] Benlian, R., Wagoner, J.: Type d’homotopie et réduction structurale des fibrés vectoriels.C. R. Acad. Sci. Paris Sér. A-B 207-209. 265 (1967), 207–209. MR 0221524
Reference: [3] Bredon, G. E., Kosinski, A.: Vector fields on $\pi $-manifolds.Ann. of Math. (2) 84 (1966), 85–90. Zbl 0151.31701, MR 0200937, 10.2307/1970531
Reference: [4] Brumfiel, G.: On the homotopy groups of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$.Ann. of Math. (2) 88 (1968), 291–311. MR 0234458, 10.2307/1970576
Reference: [5] Davis, J. F., Kirk, P.: Lecture notes in algebraic topology.Grad. Stud. Math. 35 (2001). Zbl 1018.55001, MR 1841974
Reference: [6] Dupont, J.: On the homotopy invariance of the tangent bundle II.Math. Scand. 26 (1970), 200–220. MR 0273639
Reference: [7] Frank, D.: The signature defect and the homotopy of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$.Comment. Math. Helv. 48 (1973), 525–530. MR 0343288, 10.1007/BF02566139
Reference: [8] Husemoller, D.: Fibre Bundles.Grad. Texts in Math. 20 (1993), (3rd edition). Zbl 0794.55001, MR 1249482
Reference: [9] James, I. M., Thomas, E.: An approach to the enumeration problem for non-stable vector bundles.J. Math. Mech. 14 (1965), 485–506. Zbl 0142.40701, MR 0175134
Reference: [10] Kervaire, M. A.: A note on obstructions and characteristic classes.Amer. J. Math. 81 (1959), 773–784. MR 0107863, 10.2307/2372928
Reference: [11] Kirby, R. C., Siebenmann, L. C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations.Ann. of Math. Stud. 88 (1977). Zbl 0361.57004, MR 0645390
Reference: [12] Korbaš, J., Szücs, A.: The Lyusternik-Schnirel’man category, vector bundles, and immersions of manifolds.Manuscripta Math. 95 (1998), 289–294. MR 1612062, 10.1007/BF02678031
Reference: [13] Korbaš, J., Zvengrowski, P.: The vector field problem: a survey with emphasis on specific manifolds.Exposition. Math. 12 (1) (1994), 3–20. MR 1267626
Reference: [14] Kosinski, A. A.: Differential Manifolds.pure and applied mathematics ed., Academic Press, San Diego, 1993. Zbl 0767.57001, MR 1190010
Reference: [15] Kreck, M., Lück, W.: The Novikov Conjecture, Geometry and Algebra.Oberwolfach Seminars 33, Birkhäuser Verlag, Basel, 2005. Zbl 1058.19001, MR 2117411
Reference: [16] Lance, T.: Differentiable Structures on Manifolds, in Surveys on Surgery Theory.Ann. of Math. Stud. 145 (2000), 73–104. MR 1747531
Reference: [17] Milnor, J.: Microbundles I.Topology 3 Suppl. 1 (1964), 53–80. MR 0161346, 10.1016/0040-9383(64)90005-9
Reference: [18] Morita, S.: Smoothability of ${\mathrm{P}L}$ manifolds is not topologically invariant.Manifolds—Tokyo 1973, 1975, pp. 51–56. MR 0370610
Reference: [19] Novikov, S. P.: Topology in the 20th century: a view from the inside.Uspekhi Mat. Nauk (translation in Russian Math. Surveys 59 (5) (2004), 803-829 59 (5) (2004), 3–28. Zbl 1068.01008, MR 2125926
Reference: [20] Pedersen, E. K., Ray, N.: A fibration for ${\rm Diff}\,\Sigma ^{n}$.Topology Symposium, Siegen 1979, Lecture Notes in Math. 788, 1980, pp. 165–171. MR 0585659
Reference: [21] Randall, D.: CAT $2$-fields on nonorientable CAT manifolds.Quart. J. Math. Oxford Ser. (2) 38 (151) (1987), 355–366. Zbl 0628.57015, MR 0907243, 10.1093/qmath/38.3.355
Reference: [22] Roitberg, J.: On the ${\rm PL}$ noninvariance of the span of a smooth manifold.Proc. Amer. Math. Soc. 20 (1969), 575–579. MR 0236937
Reference: [23] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds.Nagoya Math. J. 12 (1957), 59–69. Zbl 0145.20303, MR 0096223
Reference: [24] Sutherland, W. A.: The Browder-Dupont invariant.Proc. Lond. Math. Soc. (3) 33 (1976), 94–112. Zbl 0326.55013, MR 0423367, 10.1112/plms/s3-33.1.94
Reference: [25] Varadarajan, K.: On topological span.Comment. Math. Helv. 47 (1972), 249–253. Zbl 0244.57006, MR 0321090, 10.1007/BF02566801
Reference: [26] Wall, C. T. C.: Classification problems in differential topology - VI.Topology 6 (1967), 273–296. Zbl 0173.26102, MR 0216510, 10.1016/0040-9383(67)90020-1
Reference: [27] Wall, C. T. C.: Poincaré complexes I.Ann. of Math. (2) 86 (1967), 213–245. Zbl 0153.25401, MR 0217791, 10.2307/1970688
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_3.pdf 539.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo