Title:
|
On the non-invariance of span and immersion co-dimension for manifolds (English) |
Author:
|
Crowley, Diarmuid J. |
Author:
|
Zvengrowski, Peter D. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
44 |
Issue:
|
5 |
Year:
|
2008 |
Pages:
|
353-365 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we give examples in every dimension $m \ge 9$ of piecewise linearly homeomorphic, closed, connected, smooth $m$-manifolds which admit two smoothness structures with differing spans, stable spans, and immersion co-dimensions. In dimension $15$ the examples include the total spaces of certain $7$-sphere bundles over $S^8$. The construction of such manifolds is based on the topological variance of the second Pontrjagin class: a fact which goes back to Milnor and which was used by Roitberg to give examples of span variation in dimensions $m \ge 18$.
We also show that span does not vary for piecewise linearly homeomorphic smooth manifolds in dimensions less than or equal to $8$, or under connected sum with a smooth homotopy sphere in any dimension. Finally, we use results of Morita to show that in all dimensions $m \ge 19$ there are topological manifolds admitting two piecewise linear structures having different $PL$-spans. (English) |
Keyword:
|
span |
Keyword:
|
stable span |
Keyword:
|
manifolds |
Keyword:
|
non-invariance |
MSC:
|
57Q25 |
MSC:
|
57R20 |
MSC:
|
57R25 |
MSC:
|
57R55 |
idZBL:
|
Zbl 1212.57009 |
idMR:
|
MR2501571 |
. |
Date available:
|
2009-01-29T09:15:51Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127122 |
. |
Reference:
|
[1] Atiyah, M.: Thom complexes.Proc. London Math. Soc. 11 (3) (1961), 291–310. Zbl 0124.16301, MR 0131880 |
Reference:
|
[2] Benlian, R., Wagoner, J.: Type d’homotopie et réduction structurale des fibrés vectoriels.C. R. Acad. Sci. Paris Sér. A-B 207-209. 265 (1967), 207–209. MR 0221524 |
Reference:
|
[3] Bredon, G. E., Kosinski, A.: Vector fields on $\pi $-manifolds.Ann. of Math. (2) 84 (1966), 85–90. Zbl 0151.31701, MR 0200937, 10.2307/1970531 |
Reference:
|
[4] Brumfiel, G.: On the homotopy groups of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$.Ann. of Math. (2) 88 (1968), 291–311. MR 0234458, 10.2307/1970576 |
Reference:
|
[5] Davis, J. F., Kirk, P.: Lecture notes in algebraic topology.Grad. Stud. Math. 35 (2001). Zbl 1018.55001, MR 1841974 |
Reference:
|
[6] Dupont, J.: On the homotopy invariance of the tangent bundle II.Math. Scand. 26 (1970), 200–220. MR 0273639 |
Reference:
|
[7] Frank, D.: The signature defect and the homotopy of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$.Comment. Math. Helv. 48 (1973), 525–530. MR 0343288, 10.1007/BF02566139 |
Reference:
|
[8] Husemoller, D.: Fibre Bundles.Grad. Texts in Math. 20 (1993), (3rd edition). Zbl 0794.55001, MR 1249482 |
Reference:
|
[9] James, I. M., Thomas, E.: An approach to the enumeration problem for non-stable vector bundles.J. Math. Mech. 14 (1965), 485–506. Zbl 0142.40701, MR 0175134 |
Reference:
|
[10] Kervaire, M. A.: A note on obstructions and characteristic classes.Amer. J. Math. 81 (1959), 773–784. MR 0107863, 10.2307/2372928 |
Reference:
|
[11] Kirby, R. C., Siebenmann, L. C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations.Ann. of Math. Stud. 88 (1977). Zbl 0361.57004, MR 0645390 |
Reference:
|
[12] Korbaš, J., Szücs, A.: The Lyusternik-Schnirel’man category, vector bundles, and immersions of manifolds.Manuscripta Math. 95 (1998), 289–294. MR 1612062, 10.1007/BF02678031 |
Reference:
|
[13] Korbaš, J., Zvengrowski, P.: The vector field problem: a survey with emphasis on specific manifolds.Exposition. Math. 12 (1) (1994), 3–20. MR 1267626 |
Reference:
|
[14] Kosinski, A. A.: Differential Manifolds.pure and applied mathematics ed., Academic Press, San Diego, 1993. Zbl 0767.57001, MR 1190010 |
Reference:
|
[15] Kreck, M., Lück, W.: The Novikov Conjecture, Geometry and Algebra.Oberwolfach Seminars 33, Birkhäuser Verlag, Basel, 2005. Zbl 1058.19001, MR 2117411 |
Reference:
|
[16] Lance, T.: Differentiable Structures on Manifolds, in Surveys on Surgery Theory.Ann. of Math. Stud. 145 (2000), 73–104. MR 1747531 |
Reference:
|
[17] Milnor, J.: Microbundles I.Topology 3 Suppl. 1 (1964), 53–80. MR 0161346, 10.1016/0040-9383(64)90005-9 |
Reference:
|
[18] Morita, S.: Smoothability of ${\mathrm{P}L}$ manifolds is not topologically invariant.Manifolds—Tokyo 1973, 1975, pp. 51–56. MR 0370610 |
Reference:
|
[19] Novikov, S. P.: Topology in the 20th century: a view from the inside.Uspekhi Mat. Nauk (translation in Russian Math. Surveys 59 (5) (2004), 803-829 59 (5) (2004), 3–28. Zbl 1068.01008, MR 2125926 |
Reference:
|
[20] Pedersen, E. K., Ray, N.: A fibration for ${\rm Diff}\,\Sigma ^{n}$.Topology Symposium, Siegen 1979, Lecture Notes in Math. 788, 1980, pp. 165–171. MR 0585659 |
Reference:
|
[21] Randall, D.: CAT $2$-fields on nonorientable CAT manifolds.Quart. J. Math. Oxford Ser. (2) 38 (151) (1987), 355–366. Zbl 0628.57015, MR 0907243, 10.1093/qmath/38.3.355 |
Reference:
|
[22] Roitberg, J.: On the ${\rm PL}$ noninvariance of the span of a smooth manifold.Proc. Amer. Math. Soc. 20 (1969), 575–579. MR 0236937 |
Reference:
|
[23] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds.Nagoya Math. J. 12 (1957), 59–69. Zbl 0145.20303, MR 0096223 |
Reference:
|
[24] Sutherland, W. A.: The Browder-Dupont invariant.Proc. Lond. Math. Soc. (3) 33 (1976), 94–112. Zbl 0326.55013, MR 0423367, 10.1112/plms/s3-33.1.94 |
Reference:
|
[25] Varadarajan, K.: On topological span.Comment. Math. Helv. 47 (1972), 249–253. Zbl 0244.57006, MR 0321090, 10.1007/BF02566801 |
Reference:
|
[26] Wall, C. T. C.: Classification problems in differential topology - VI.Topology 6 (1967), 273–296. Zbl 0173.26102, MR 0216510, 10.1016/0040-9383(67)90020-1 |
Reference:
|
[27] Wall, C. T. C.: Poincaré complexes I.Ann. of Math. (2) 86 (1967), 213–245. Zbl 0153.25401, MR 0217791, 10.2307/1970688 |
. |