Previous |  Up |  Next

Article

Title: Invariant prolongation of BGG-operators in conformal geometry (English)
Author: Hammerl, Matthias
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 367-384
Summary lang: English
.
Category: math
.
Summary: BGG-operators form sequences of invariant differential operators and the first of these is overdetermined. Interesting equations in conformal geometry described by these operators are those for Einstein scales, conformal Killing forms and conformal Killing tensors. We present a deformation procedure of the tractor connection which yields an invariant prolongation of the first operator. The explicit calculation is presented in the case of conformal Killing forms. (English)
Keyword: conformal geometry
Keyword: invariant differential operators
Keyword: overdetermined systems
Keyword: prolongation
Keyword: tractor calculus
MSC: 35C15
MSC: 35N10
MSC: 53A30
MSC: 58J70
idZBL: Zbl 1212.53014
idMR: MR2501573
.
Date available: 2009-01-29T09:15:55Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127123
.
Reference: [1] Bailey, T. N., Eastwood, M. G., Gover, A. Rod: Thomas’s structure bundle for conformal, projective and related structures.Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. MR 1322223, 10.1216/rmjm/1181072333
Reference: [2] Branson, T., Čap, A., Eastwood, M., Gover, A. R.: Prolongations of geometric overdetermined systems.Int. J. Math. 17 (6) (2006), 641–664. Zbl 1101.35060, MR 2246885, 10.1142/S0129167X06003655
Reference: [3] Calderbank, D. M. J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences.J. Reine Angew. Math. 537 (2001), 67–103. Zbl 0985.58002, MR 1856258
Reference: [4] Čap, A.: Infinitesimal automorphisms and deformations of parabolic geometries.J. Europ. Math. Soc., to appear. MR 2390330
Reference: [5] Čap, A.: Overdetermined systems, conformal geometry, and the BGG complex.Symmetries and Overdetermined Systems of Partial Differential Equations (Eastwood, M. G., Millor, W., eds.), vol. 144, The IMA Volumes in Mathematics and its Applications, Springer, 2008, pp. 1–25.
Reference: [6] Čap, A., Gover, A. R.: Tractor bundles for irreducible parabolic geometries.Global analysis and harmonic analysis (Marseille-Luminy, 1999), vol. 4 of Sémin. Congr., Soc. Math. France, Paris, 2000, pp. 129–154. MR 1822358
Reference: [7] Čap, A., Gover, A. R.: Tractor calculi for parabolic geometries.Trans. Amer. Math. Soc. 354 (4) (2002), 1511–1548, electronic. Zbl 0997.53016, MR 1873017, 10.1090/S0002-9947-01-02909-9
Reference: [8] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequences.Ann. of Math. 154 (1) (2001), 97–113. Zbl 1159.58309, MR 1847589, 10.2307/3062111
Reference: [9] Eastwood, M.: Higher symmetries of the Laplacian.Ann. of Math. (2) 161 (3) (2005), 1645–1665. Zbl 1091.53020, MR 2180410, 10.4007/annals.2005.161.1645
Reference: [10] Gover, A. R.: Laplacian operators and $Q$-curvature on conformally Einstein manifolds.Math. Ann. 336 (2) (2006), 311–334. Zbl 1125.53032, MR 2244375, 10.1007/s00208-006-0004-z
Reference: [11] Gover, A. R., Nurowski, P.: Obstructions to conformally Einstein metrics in $n$ dimensions.J. Geom. Phys. 56 (3) (2006), 450–484. Zbl 1098.53014, MR 2171895, 10.1016/j.geomphys.2005.03.001
Reference: [12] Gover, A. R., Šilhan, J.: The conformal Killing equation on forms – prolongations and applications.Diff. Geom. Appl., to appear.
Reference: [13] Kashiwada, T.: On conformal Killing tensor.Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67–74. Zbl 0179.26902, MR 0243458
Reference: [14] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem.Ann. of Math. (2) 74 (1961), 329–387. Zbl 0134.03501, MR 0142696, 10.2307/1970237
Reference: [15] Leitner, F.: Conformal Killing forms with normalisation condition.Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 279–292. Zbl 1101.53040, MR 2152367
Reference: [16] Penrose, R., Rindler, W.: Spinors and space-time.Two-spinor calculus and relativistic fields, vol. 1, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1987. Zbl 0663.53013, MR 0917488
Reference: [17] Semmelmann, U.: Conformal Killing forms on Riemannian manifolds.Math. Z. 245 (3) (2003), 503–527. Zbl 1061.53033, MR 2021568, 10.1007/s00209-003-0549-4
Reference: [18] Šilhan, J.: Invariant operators in conformal geometry.Ph.D. thesis, University of Auckland, 2006.
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_4.pdf 521.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo