Previous |  Up |  Next

Article

Title: $\phi({\rm Ric})$-vector fields in Riemannian spaces (English)
Author: Hinterleitner, Irena
Author: Kiosak, Volodymyr A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 385-390
Summary lang: English
.
Category: math
.
Summary: In this paper we study vector fields in Riemannian spaces, which satisfy $\nabla \varphi =\mu $, ${\textbf{Ric}}$, $\mu =\mbox {const.}$ We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and $\varphi (\mbox {\textbf{Ric}})$-vector fields cannot exist simultaneously. It was found that Riemannian spaces with $\varphi (\mbox {\textbf{Ric}})$-vector fields of constant length have constant scalar curvature. The conditions for the existence of $\varphi (\mbox {\textbf{Ric}})$-vector fields in symmetric spaces are given. (English)
Keyword: special vector field
Keyword: pseudo-Riemannian spaces
Keyword: Riemannian spaces
Keyword: symmetric spaces
Keyword: Kasner metric
MSC: 53B05
MSC: 53B30
idZBL: Zbl 1212.53018
idMR: MR2501574
.
Date available: 2009-01-29T09:15:59Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127124
.
Reference: [1] Brinkmann, H. W.: Einstein spaces which are mapped conformally on each other.Math. Ann. 94 (1) (1925), 119–145. MR 1512246, 10.1007/BF01208647
Reference: [2] Hall, G.: Some remarks on the space-time of Newton and Einstein.Fund. Theories Phys. 153 (2007), 13–29. Zbl 1151.83001, MR 2368238
Reference: [3] Kiosak, V. A.: Equidistant Riemannian spaces. Geometry of generalized spaces.Penz. Gos. Ped. Inst., Penza (1992), 37–41. MR 1265502
Reference: [4] Landau, L. D., Lifschitz, E. M.: Lehrbuch der theoretischen Physik, II, Klassische Feldtheorie.Akademie Verlag, Berlin, 1973. MR 0431969
Reference: [5] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci. 78 (3) (1996), 311–333. MR 1384327, 10.1007/BF02365193
Reference: [6] Mikeš, J., Hinterleitner, I., Kiosak, V. A.: On the theory of geodesic mappings of Einstein spaces and their generalizations.AIP Conf. Proc., 2006, pp. 428–435.
Reference: [7] Mikeš, J., Rachůnek, L.: On tensor fields semiconjugated with torse-forming vector fields.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), 151–160. Zbl 1092.53016, MR 2218574
Reference: [8] Mikeš, J., Škodová, M.: Concircular vector fields on compact spaces.Publ. de la RSME 11 (2007), 302–307.
Reference: [9] Shandra, I. G.: Concircular vector fields on semi-riemannian spaces.J. Math. Sci. 31 (2003), 53–68. MR 2464554
Reference: [10] Yano, K.: Concircular Geometry.I-IV. Proc. Imp. Acad., Tokyo, 1940. Zbl 0025.08504
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_5.pdf 421.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo