Previous |  Up |  Next

Article

Title: On closed 4-manifolds admitting a Morse function with 4 critical points (English)
Author: Huang, Wenxue
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 1
Year: 1996
Pages: 47-59
.
Category: math
.
MSC: 57N13
MSC: 57R19
MSC: 57R70
MSC: 58E05
idZBL: Zbl 0907.58007
idMR: MR1371687
DOI: 10.21136/CMJ.1996.127269
.
Date available: 2009-09-24T09:53:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127269
.
Reference: [1] T. E. Cecil and P. J. Ryan: Tight and taut immersions of manifolds.Pitman Adv. Publ. Program, 1985. MR 0781126
Reference: [2] J. Eells and N. H. Kuiper: Manifolds which are like projective planes.Publ. Math. I. H. E. S. 14 (1962), 128–222. MR 0145544, 10.1007/BF02684323
Reference: [3] M. H. Freedman: The topology of 4-dimensional manifolds.J. Diff. Geom. 17 (1982), 357–453. MR 0679066, 10.4310/jdg/1214437136
Reference: [4] M. W. Hirsch: Differential topology.Springer, 1976. Zbl 0356.57001, MR 0448362
Reference: [5] N. H. Kuiper: Minimal total absolute curvature for immersions.Invent. Math. 10 (1970), 209–238. Zbl 0195.51102, MR 0267597, 10.1007/BF01403250
Reference: [6] N. H. Kuiper: Tight embeddings and maps, submanifolds of geometrical class three in $E^N$.The Chern Symposium, Springer (1979), 97–145. MR 0609559
Reference: [7] J. Milnor: Morse theory.Princeton Univ. Press, 1963. Zbl 0108.10401, MR 0163331
Reference: [8] J. D. Moore: Codimension two submanifolds of positive curvature.Proc. Amer. Math. Soc. 70 (1978), 72–74. Zbl 0395.53024, MR 0487560, 10.1090/S0002-9939-1978-0487560-8
Reference: [9] M. Morse: Homology relations on regular orientable manifolds.Proc. Natl. Acad. Sc. 38 (1952), 247–258. Zbl 0049.12504, MR 0048031, 10.1073/pnas.38.3.247
Reference: [10] M. Morse: The existence of polar nondegenerate functions.Ann. of Math. 71 (1960), 352–383. MR 0113232, 10.2307/1970086
Reference: [11] M. Morse: The elimination of critical points of a non-degenerate funnction.J. Analyse Math. 13 (1964), 257–316. MR 0184256, 10.1007/BF02786621
Reference: [12] M. Morse and S. S. Cairns: Critical point theory in global analysis and differential topology.Acad. Press, New York, 1969. MR 0245046
Reference: [13] R. S. Palais and C. L. Terng: Critical point theory and submanifold geometry.Springer, 1988. MR 0972503
Reference: [14] E. H. Spanier: Algebraic topology.McGraw-Hill, New York, 1966. Zbl 0145.43303, MR 0210112
Reference: [15] G. W. Whitehead: Elements of homotopy theory.Springer, 1978. Zbl 0406.55001, MR 0516508
Reference: [16] T. J. Willmore: Total curvature in Riemannian geometry.Ellis Horwood Ltd., West Sussex, England, 1982. Zbl 0501.53038, MR 0686105
.

Files

Files Size Format View
CzechMathJ_46-1996-1_5.pdf 943.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo