Previous |  Up |  Next

Article

Title: The associated tensor norm to $(q,p)$-absolutely summing operators on $C(K)$-spaces (English)
Author: López Molina, J. A.
Author: Sánchez-Pérez, E. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 627-631
Summary lang: English
.
Category: math
.
Summary: We give an explicit description of a tensor norm equivalent on $C(K) \otimes F$ to the associated tensor norm $\nu _{qp}$ to the ideal of $(q,p)$-absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to $\nu _{qp}$. (English)
MSC: 46B28
MSC: 46M05
MSC: 47B07
MSC: 47B10
MSC: 47L05
MSC: 47L20
idZBL: Zbl 0903.46017
idMR: MR1479309
.
Date available: 2009-09-24T10:09:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127383
.
Reference: [1] A. Defant, K. Floret: Tensor norms and Operator Ideals.North-Holland Mathematics Studies 176. Amsterdam-London-New York-Tokyo, 1993. MR 1209438
Reference: [2] J. T. Lapresté: Operateurs sommantes et factorization à travers les espaces $L^p$.Studia Math. 56 (1976), 47–83. MR 0454704
Reference: [3] J. A. López Molina, E. A. Sánchez Pérez: Ideales de operadores absolutamente continuos.Rev. Real Acad. Ciencias Exactas, Fisicas y Naturales, Madrid 87 (1993), 349–378. MR 1318866
Reference: [4] U. Matter: Absolutely continuous operators and super-reflexivity.Math. Nachr. 130 (1987), 193–216. Zbl 0622.47045, MR 0885628, 10.1002/mana.19871300118
Reference: [5] U. Matter, H. Jarchow: Interpolative constructions for operator ideals.Note di Matematica VIII (1988), no. 1, 45–56. MR 1050508
Reference: [6] B. Maurey: Sur certaines propriétés des opérateurs sommants.C. R. Acad. Sci. Paris A 277 (1973), 1053–1055. Zbl 0269.47014, MR 0385621
Reference: [7] A. Pietsch: Operator Ideals.North-Holland Publ. Company, Amsterdam-New York-Oxford, 1980. Zbl 0455.47032, MR 0582655
Reference: [8] G. Pisier: Factorization of operators through $L_{p,\infty }$ or $L_{p,1}$ and non-commutative generalizations.Math. Ann. 276 (1986), 105–136. MR 0863711, 10.1007/BF01450929
.

Files

Files Size Format View
CzechMathJ_47-1997-4_5.pdf 513.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo