Previous |  Up |  Next

Article

Title: Descriptions of exceptional sets in the circles for functions from the Bergman space (English)
Author: Jakóbczak, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 633-649
Summary lang: English
.
Category: math
.
Summary: Let $D$ be a domain in $\mathbb{C}^2$. For $w \in \mathbb{C} $, let $D_w = \lbrace z \in \mathbb{C} \mid (z,w) \in D \rbrace $. If $f$ is a holomorphic and square-integrable function in $D$, then the set $E(D,f)$ of all $w$ such that $f(.,w)$ is not square-integrable in $D_w$ is of measure zero. We call this set the exceptional set for $f$. In this note we prove that for every $0<r<1$,and every $G_\delta $-subset $E$ of the circle $C(0,r) = \lbrace z \in \mathbb{C} \mid | z | =r \rbrace $,there exists a holomorphic square-integrable function $f$ in the unit ball $B$ in $\mathbb{C}^2$ such that $E(B,f) = E.$ (English)
MSC: 32A37
MSC: 32H10
MSC: 32H99
idZBL: Zbl 0901.32006
idMR: MR1479310
.
Date available: 2009-09-24T10:09:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127384
.
Reference: [1] P. Jakóbczak: The exceptional sets for functions from the Bergman space.Portugaliae Mathematica 50, No 1 (1993), 115–128. MR 1300590
Reference: [2] P.Jakóbczak: The exceptional sets for functions of the Bergman space in the unit ball.Rend. Mat. Acc. Lincei s.9, 4 (1993), 79–85. Zbl 0788.46061, MR 1233394
Reference: [3] J.Janas: On a theorem of Lebow and Mlak for several commuting operators.Studia Math. 76 (1983), 249–253. MR 0729105, 10.4064/sm-76-3-249-253
Reference: [4] B.W.Šabat: Introduction to Complex Analysis.Nauka, Moskva, 1969. (Russian) Zbl 0169.09001, MR 0584932
.

Files

Files Size Format View
CzechMathJ_47-1997-4_6.pdf 1.870Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo