Previous |  Up |  Next

Article

Title: A study of $q$-Laguerre polynomials through the $T_{k,q,x}$-operator (English)
Author: Khan, M. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 619-626
Summary lang: English
.
Category: math
.
Summary: The present paper deals with certain generating functions and recurrence relations for $q$-Laguerre polynomials through the use of the $T_{k,q,x}$-operator introduced in an earlier paper [7]. (English)
MSC: 26A33
MSC: 33C45
MSC: 33D45
idZBL: Zbl 0899.33007
idMR: MR1479308
.
Date available: 2009-09-24T10:08:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127382
.
Reference: [1] W. A. Al-salam: Operational representation for the Laguerre and Hermite polynomials.Duke Math. Journal 31 (1964), 127–142. MR 0159053
Reference: [2] W. A. Al-salam, L. Carlitz: Some orthogonal $q$-polynomials.Math. Nachr. 30 (1965), 47–61. MR 0197804, 10.1002/mana.19650300105
Reference: [3] W. Hahn: Beitrage zur Theorie der Heineschen Reihen, Die 24 Integrale der hypergeometrischen $q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation.Math. Nachr. 2 (1949), 340–379. MR 0035344, 10.1002/mana.19490020604
Reference: [4] M. A. Khan: Certain fractional $q$-integrals and $q$-derivatives.Nanta Mathematica 7 (1974), no. 1, 52–60. Zbl 0289.33009, MR 0369630
Reference: [5] M. A. Khan: On $q$-Laguerre polynomials.Ganita 34 (1983), no. 1 and 2, 111–123. Zbl 0638.33006, MR 0910619
Reference: [6] M. A. Khan: $q$-Analogue of certain operational formulae.Houston J. Math. 13 (1987), no. 1, pp. 75–82. MR 0884235
Reference: [7] M. A. Khan: On a calculus for the $T_{k,q,x}$-operator.Mathematica Balkanica, New series 6 (1992), fasc. 1, pp. 83–90. MR 1170732
Reference: [8] M. A. Khan: On some operational representations of $q$-polynomials.Czechoslovak Mathematical Journal 45 (1995), 457–464. Zbl 0836.33009, MR 1344511
Reference: [9] M. A. Khan, A. H. Khan: On some characterizations of $q$-Bessel polynomials.Acta Math. Viet. 15 (1990), no. 1, pp. 55–59. MR 1087787
Reference: [10] H. B. Mittal: Some generating functions.Univ. Lisbova Revista Fae. Ci A(2). Mat. 13 (1970), 43–51. Zbl 0229.33015, MR 0308486
Reference: [11] E. D. Rainville: Special Functions.The MacMillan Co., New York (1960). Zbl 0092.06503, MR 0107725
Reference: [12] L. J. Slater: Generalized Hypergeometric Functions.Cambridge University Press (1966). Zbl 0135.28101, MR 0201688
Reference: [13] H. M. Srivastava, H. L. Manocha: A Treatise on Generating Functions.John Wiley and Sons (Halsted Press), New York, Ellis Horwood, Chichester, 1985. MR 0750112
.

Files

Files Size Format View
CzechMathJ_47-1997-4_4.pdf 863.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo