[1] A. Ben-Israel and T. N. Greville: Generalized Inverses: Theory and Applications. Academic Press, New-York, 1973.
[2] A. Berman and R. J. Plemmons: 
Nonnegative Matrices in the Mathematical Sciences. Academic Press, New-York, 1979. 
MR 0544666[3] S. L. Campbell and C. D. Meyer, Jr.: 
Generalized Inverses of Linear Transformations. Dover Publications, New York, 1991. 
MR 1105324[5] M. Fiedler: 
A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Math. J. 25 (1975), 619–633. 
MR 0387321[7] C. D. Meyer: 
The condition of a finite Markov chain and perturbations bounds for the limiting probabilities. SIAM J. Alg. Disc. Meth. 1 (1980), 273–283. 
DOI 10.1137/0601031 | 
MR 0586154[9] C. D. Meyer, Jr. and G. W. Stewart: 
Derivatives and perturbations of eigenvectors. SIAM J. Numer. Anal. 25 (1988), 679–691. 
DOI 10.1137/0725041 | 
MR 0942213[12] M. Neumann and R. J. Plemmons: 
Convergent nonnegative matrices and iterative methods for consistent linear systems. Numer. Math. 31 (1978), 265–279. 
DOI 10.1007/BF01397879 | 
MR 0514597[14] E. Seneta: 
Non-negative Matrices and Markov Chains. Second Edition. Springer Verlag, New-York, 1981. 
MR 2209438[15] R. S. Varga: 
Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962. 
MR 0158502