| Title: | Homomorphisms between $A$-projective Abelian groups and left Kasch-rings (English) | 
| Author: | Albrecht, Ulrich | 
| Author: | Jeong, Jong-Woo | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 48 | 
| Issue: | 1 | 
| Year: | 1998 | 
| Pages: | 31-43 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Glaz and Wickless introduced the class $G$ of mixed abelian groups $A$ which have finite torsion-free rank and satisfy the following three properties: i)  $A_p$ is finite for all primes $p$, ii)  $A$ is isomorphic to a pure subgroup of $\Pi _p A_p$, and iii)  $\mathop {\mathrm Hom}\nolimits (A,tA)$ is torsion. A ring $R$ is a left Kasch ring if every proper right ideal of $R$ has a non-zero left annihilator. We characterize the elements $A$ of $G$ such that $E(A)/tE(A)$ is a left Kasch ring, and discuss related results. (English) | 
| Keyword: | mixed Abelian group | 
| Keyword: | endomorphism ring | 
| Keyword: | Kasch ring | 
| Keyword: | $A$-solvable group | 
| MSC: | 20K20 | 
| MSC: | 20K21 | 
| MSC: | 20K25 | 
| MSC: | 20K30 | 
| idZBL: | Zbl 0931.20043 | 
| idMR: | MR1614064 | 
| . | 
| Date available: | 2009-09-24T10:10:43Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127396 | 
| . | 
| Reference: | [ALJA1] U. Albrecht: Bewertete $p$-Gruppen und ein Satz von Szele.J. of Alg. 97 (1985), 201–220. Zbl 0575.20048, MR 0812177, 10.1016/0021-8693(85)90081-X | 
| Reference: | [ALJA2] U. Albrecht: On the quasi-splitting of exact sequences.J. of Alg. 144 (1991), 344–358. Zbl 0749.20029, MR 1140608, 10.1016/0021-8693(91)90108-K | 
| Reference: | [ALBR] U. Albrecht: Endomorphism rings of faithfully flat abelian groups of infinite rank.Results in Mathematics 17 (1990), 179–201. MR 1052585, 10.1007/BF03322457 | 
| Reference: | [ALBR2] U. Albrecht: An Azumaya Theorem for a class of mixed abelian groups.Preprint. Zbl 1079.20503 | 
| Reference: | [ALBR3] U. Albrecht: Mixed groups projective as modules over their endomorphism ring.Preprint. | 
| Reference: | [AGW] U. Albrecht, H. P. Goeters and W. Wickless: The flat dimension of mixed abelian groups as $E$-modules.Preprint. MR 1336551 | 
| Reference: | [AF] F. Anderson and K. Fuller: Rings and Categories of Modules.Springer Verlag, Berlin, Heidelberg, New York, 1992. MR 1245487 | 
| Reference: | [Bass] H. Bass: Finistic dimension and a generalization of semi-primary rings.Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 0157984, 10.1090/S0002-9947-1960-0157984-8 | 
| Reference: | [Fu] L. Fuchs: Infinite Abelian Groups.Academic Press, New York, London, 1970/73. MR 0255673 | 
| Reference: | [GW] S. Glaz and W. Wickless: Regular and principal projective endomorphism rings of mixed abelian groups.(to appear). MR 1261253 | 
| Reference: | [HRW] R. Hunter, F. Richman and E. Walker: Subgroups of bounded abelian groups.Abelian Groups and Modules, Udine 1984, Springer Verlag, Berlin, Heidelberg, New York, 1984, pp. 17–36. MR 0789807 | 
| Reference: | [St] Bo Stenström: Rings of Quotients.Springer Verlag, Berlin, Heidelberg, New York, 1975. MR 0389953 | 
| Reference: | [U] F. Ulmer: A flatness criterion in Grothendick categories.Inv. Math. 19 (1973), 331–336. MR 0335601, 10.1007/BF01425418 | 
| . |