Previous |  Up |  Next

Article

Title: Homomorphisms between $A$-projective Abelian groups and left Kasch-rings (English)
Author: Albrecht, Ulrich
Author: Jeong, Jong-Woo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 1
Year: 1998
Pages: 31-43
Summary lang: English
.
Category: math
.
Summary: Glaz and Wickless introduced the class $G$ of mixed abelian groups $A$ which have finite torsion-free rank and satisfy the following three properties: i) $A_p$ is finite for all primes $p$, ii) $A$ is isomorphic to a pure subgroup of $\Pi _p A_p$, and iii) $\mathop {\mathrm Hom}\nolimits (A,tA)$ is torsion. A ring $R$ is a left Kasch ring if every proper right ideal of $R$ has a non-zero left annihilator. We characterize the elements $A$ of $G$ such that $E(A)/tE(A)$ is a left Kasch ring, and discuss related results. (English)
Keyword: mixed Abelian group
Keyword: endomorphism ring
Keyword: Kasch ring
Keyword: $A$-solvable group
MSC: 20K20
MSC: 20K21
MSC: 20K25
MSC: 20K30
idZBL: Zbl 0931.20043
idMR: MR1614064
.
Date available: 2009-09-24T10:10:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127396
.
Reference: [ALJA1] U. Albrecht: Bewertete $p$-Gruppen und ein Satz von Szele.J. of Alg. 97 (1985), 201–220. Zbl 0575.20048, MR 0812177, 10.1016/0021-8693(85)90081-X
Reference: [ALJA2] U. Albrecht: On the quasi-splitting of exact sequences.J. of Alg. 144 (1991), 344–358. Zbl 0749.20029, MR 1140608, 10.1016/0021-8693(91)90108-K
Reference: [ALBR] U. Albrecht: Endomorphism rings of faithfully flat abelian groups of infinite rank.Results in Mathematics 17 (1990), 179–201. MR 1052585, 10.1007/BF03322457
Reference: [ALBR2] U. Albrecht: An Azumaya Theorem for a class of mixed abelian groups.Preprint. Zbl 1079.20503
Reference: [ALBR3] U. Albrecht: Mixed groups projective as modules over their endomorphism ring.Preprint.
Reference: [AGW] U. Albrecht, H. P. Goeters and W. Wickless: The flat dimension of mixed abelian groups as $E$-modules.Preprint. MR 1336551
Reference: [AF] F. Anderson and K. Fuller: Rings and Categories of Modules.Springer Verlag, Berlin, Heidelberg, New York, 1992. MR 1245487
Reference: [Bass] H. Bass: Finistic dimension and a generalization of semi-primary rings.Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 0157984, 10.1090/S0002-9947-1960-0157984-8
Reference: [Fu] L. Fuchs: Infinite Abelian Groups.Academic Press, New York, London, 1970/73. MR 0255673
Reference: [GW] S. Glaz and W. Wickless: Regular and principal projective endomorphism rings of mixed abelian groups.(to appear). MR 1261253
Reference: [HRW] R. Hunter, F. Richman and E. Walker: Subgroups of bounded abelian groups.Abelian Groups and Modules, Udine 1984, Springer Verlag, Berlin, Heidelberg, New York, 1984, pp. 17–36. MR 0789807
Reference: [St] Bo Stenström: Rings of Quotients.Springer Verlag, Berlin, Heidelberg, New York, 1975. MR 0389953
Reference: [U] F. Ulmer: A flatness criterion in Grothendick categories.Inv. Math. 19 (1973), 331–336. MR 0335601, 10.1007/BF01425418
.

Files

Files Size Format View
CzechMathJ_48-1998-1_3.pdf 393.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo