Previous |  Up |  Next

Article

Title: On a bound on algebraic connectivity: the case of equality (English)
Author: Kirkland, Stephen J.
Author: Neumann, Michael
Author: Shader, Bryan L.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 1
Year: 1998
Pages: 65-76
Summary lang: English
.
Category: math
.
Summary: In a recent paper the authors proposed a lower bound on $1 - \lambda _i$, where $\lambda _i$, $ \lambda _i \ne 1$, is an eigenvalue of a transition matrix $T$ of an ergodic Markov chain. The bound, which involved the group inverse of $I - T$, was derived from a more general bound, due to Bauer, Deutsch, and Stoer, on the eigenvalues of a stochastic matrix other than its constant row sum. Here we adapt the bound to give a lower bound on the algebraic connectivity of an undirected graph, but principally consider the case of equality in the bound when the graph is a weighted tree. It is shown that the bound is sharp only for certain Type I trees. Our proof involves characterizing the case of equality in an upper estimate for certain inner products due to A. Paz. (English)
MSC: 05C40
MSC: 05C50
MSC: 15A09
MSC: 15A42
MSC: 15A45
MSC: 15A51
MSC: 60J10
idZBL: Zbl 0931.15013
idMR: MR1614076
.
Date available: 2009-09-24T10:11:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127399
.
Reference: [1] F.L. Bauer, Eckart Deutsch, and J. Stoer: Abschätzungen für die Eigenwerte positive linearer Operatoren.Lin. Alg. Appl. 2 (1969), 275–301. MR 0245587, 10.1016/0024-3795(69)90031-7
Reference: [2] A. Ben-Israel and T.N. Greville: Generalized Inverses: Theory and Applications.Academic Press, New-York, 1973.
Reference: [3] A. Berman and R.J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.SIAM Publications, Philadelphia, 1994. MR 1298430
Reference: [4] S.L. Campbell and C.D. Meyer, Jr.: Generalized Inverses of Linear Transformations.Dover Publications, New York, 1991. MR 1105324
Reference: [5] Eckart Deutsch and C. Zenger: Inclusion domains for eigenvalues of stochastic matrices.Numer. Math. 18 (1971), 182–192. MR 0301908, 10.1007/BF01436327
Reference: [6] M. Fiedler: Algebraic connectivity of graphs.Czechoslovak Math. J. 23 (1973), 298–305. Zbl 0265.05119, MR 0318007
Reference: [7] M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory.Czechoslovak Math. J. 25 (1975), 619–633. MR 0387321
Reference: [8] S.J. Kirkland, M. Neumann, and B. Shader: Bounds on the subdominant eigenvalue involving group inverses with applications to graphs.Czechoslovak Math. J. 48(123) (1998), 1–20. MR 1614056, 10.1023/A:1022455208972
Reference: [9] S.J. Kirkland, M. Neumann, and B. Shader: Distances in weighted trees via group inverses of Laplacian matrices.SIAM J. Matrix Anal. Appl (to appear). MR 1471996
Reference: [10] S.J. Kirkland, M. Neumann, and B. Shader: Characteristic vertices of weighted trees via Perron values.Lin. Multilin. Alg. 40 (1996), 311–325. MR 1384650, 10.1080/03081089608818448
Reference: [11] S.J. Kirkland, M. Neumann, and B. Shader: Applications of Paz’s inequality to perturbation bounds ffor Markov chains.Lin. Alg. Appl (to appear).
Reference: [12] R. Merris: Characteristic vertices of trees.Lin. Multilin. Alg., 22 (1987), 115–131. Zbl 0636.05021, MR 0936566, 10.1080/03081088708817827
Reference: [13] A. Paz: Introduction to Probabilistic Automata.Academic Press, New-York, 1971. Zbl 0234.94055, MR 0289222
Reference: [14] E. Seneta: Non-negative Matrices and Markov Chains. Second Edition.Springer Verlag, New-York, 1981, pp. . MR 2209438
.

Files

Files Size Format View
CzechMathJ_48-1998-1_6.pdf 359.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo