[1] M. E. Adams, V. Koubek and J. Sichler: 
Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras). Trans. Amer. Math. Soc. 285 (1984), 57–79. 
DOI 10.1090/S0002-9947-1984-0748830-6 | 
MR 0748830 
[2] M. E. Adams, V. Koubek and J. Sichler: 
Pseudocomplemented distributive lattices with small endomorphism monoids. Bull. Austral. Math. Soc. 28 (1983), 305–318. 
DOI 10.1017/S0004972700021031 | 
MR 0729763 
[5] L. M. Gluskin: 
Semigroups of isotone transformations. Uspekhi Math. Nauk 16 (1961), 157–162. (Russian) 
MR 0131486 
[6] V. Koubek: 
Infinite image homomorphisms of distributive bounded lattices. Coll. Math. Soc. János Bolyai, 43. Lecture in Universal Algebra, Szeged 1983, North Holland, Amsterdam, 1985, pp. 241–281. 
MR 0860268 
[7] V. Koubek and H. Radovanská: 
Algebras determined by their endomorphism monoids. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 187–225. 
MR 1295117 
[10] V. Koubek and J. Sichler: 
Finitely generated universal varieties of distributive double $p$-algebras. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 139–164. 
MR 1280987 
[11] V. Koubek and J. Sichler: 
Priestley duals of products. Cahiers Topologie Gèom. Différentielle Catégoriques 32 (1991), 243–256. 
MR 1158110 
[12] K. D. Magill: 
The semigroup of endomorphisms of a Boolean ring. Semigroup Forum 4 (1972), 411–416. 
MR 0272690 
[14] R. McKenzie and C. Tsinakis: 
On recovering a bounded distributive lattices from its endomorphism monoid. Houston J. Math. 7 (1981), 525–529. 
MR 0658568 
[17] H. A. Priestley: 
Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 36–60. 
MR 0779844 | 
Zbl 0557.06007 
[18] A. Pultr and V. Trnková: 
Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. 
MR 0563525