Previous |  Up |  Next

Article

Title: Equimorphy in varieties of distributive double $p$-algebras (English)
Author: Koubek, V.
Author: Sichler, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 3
Year: 1998
Pages: 473-544
Summary lang: English
.
Category: math
.
Summary: Any finitely generated regular variety $\mathbb{V}$ of distributive double $p$-algebras is finitely determined, meaning that for some finite cardinal $n(\mathbb{V})$, any subclass $S\subseteq \mathbb{V}$ of algebras with isomorphic endomorphism monoids has fewer than $n(\mathbb{V})$ pairwise non-isomorphic members. This result follows from our structural characterization of those finitely generated almost regular varieties which are finitely determined. We conjecture that any finitely generated, finitely determined variety of distributive double $p$-algebras must be almost regular. (English)
Keyword: distributive double $p$-algebra
Keyword: variety
Keyword: endomorphism monoid
Keyword: equimorphy
Keyword: categorical universality
MSC: 06D15
MSC: 06E15
MSC: 08A35
MSC: 08B99
MSC: 18B15
MSC: 54F05
idZBL: Zbl 0952.06013
idMR: MR1637938
.
Date available: 2009-09-24T10:15:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127434
.
Reference: [1] M. E. Adams, V. Koubek and J. Sichler: Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras).Trans. Amer. Math. Soc. 285 (1984), 57–79. MR 0748830, 10.1090/S0002-9947-1984-0748830-6
Reference: [2] M. E. Adams, V. Koubek and J. Sichler: Pseudocomplemented distributive lattices with small endomorphism monoids.Bull. Austral. Math. Soc. 28 (1983), 305–318. MR 0729763, 10.1017/S0004972700021031
Reference: [3] R. Beazer: The determination congruence on double $p$-algebras.Algebra Universalis 6 (1976), 121–129. Zbl 0353.06002, MR 0419319, 10.1007/BF02485824
Reference: [4] B. A. Davey: Subdirectly irreducible distributive double $p$-algebras.Algebra Universalis 8 (1978), 73–88. Zbl 0381.06019, MR 0450160, 10.1007/BF02485372
Reference: [5] L. M. Gluskin: Semigroups of isotone transformations.Uspekhi Math. Nauk 16 (1961), 157–162. (Russian) MR 0131486
Reference: [6] V. Koubek: Infinite image homomorphisms of distributive bounded lattices.Coll. Math. Soc. János Bolyai, 43. Lecture in Universal Algebra, Szeged 1983, North Holland, Amsterdam, 1985, pp. 241–281. MR 0860268
Reference: [7] V. Koubek and H. Radovanská: Algebras determined by their endomorphism monoids.Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 187–225. MR 1295117
Reference: [8] V. Koubek and J. Sichler: Universal varieties of distributive double $p$-algebras.Glasgow Math. J. 26 (1985), 121–131. MR 0798738, 10.1017/S0017089500005887
Reference: [9] V. Koubek and J. Sichler: Categorical universality of regular distributive double $p$-algebras.Glasgow Math. J. 32 (1990), 329–340. MR 1073673, 10.1017/S0017089500009411
Reference: [10] V. Koubek and J. Sichler: Finitely generated universal varieties of distributive double $p$-algebras.Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 139–164. MR 1280987
Reference: [11] V. Koubek and J. Sichler: Priestley duals of products.Cahiers Topologie Gèom. Différentielle Catégoriques 32 (1991), 243–256. MR 1158110
Reference: [12] K. D. Magill: The semigroup of endomorphisms of a Boolean ring.Semigroup Forum 4 (1972), 411–416. MR 0272690
Reference: [13] C. J. Maxson: On semigroups of Boolean ring endomorphisms.Semigroup Forum 4 (1972), 78–82. Zbl 0262.06011, MR 0297900, 10.1007/BF02570772
Reference: [14] R. McKenzie and C. Tsinakis: On recovering a bounded distributive lattices from its endomorphism monoid.Houston J. Math. 7 (1981), 525–529. MR 0658568
Reference: [15] H. A. Priestley: Representation of distributive lattices by means of ordered Stone spaces.Bull. London Math. Soc. 2 (1970), 186–190. Zbl 0201.01802, MR 0265242, 10.1112/blms/2.2.186
Reference: [16] H. A. Priestley: The construction of spaces dual to pseudocomplemented distributive lattices.Quart. J. Math. Oxford 26 (1975), 215–228. Zbl 0323.06013, MR 0392731, 10.1093/qmath/26.1.215
Reference: [17] H. A. Priestley: Ordered sets and duality for distributive lattices.Ann. Discrete Math. 23 (1984), 36–60. Zbl 0557.06007, MR 0779844
Reference: [18] A. Pultr and V. Trnková: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North Holland, Amsterdam, 1980. MR 0563525
Reference: [19] B. M. Schein: Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups.Fund. Math. 68 (1970), 31–50. Zbl 0197.28902, MR 0272686, 10.4064/fm-68-1-31-50
.

Files

Files Size Format View
CzechMathJ_48-1998-3_9.pdf 866.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo