[1] M. Berger:
Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330.
MR 0079806
[2] E. Bonan:
Sur les $G$-structures de type quaternionien. Cahiers de Top. et Geom. Diff. 9 (1967), 389–463.
MR 0233302 |
Zbl 0171.20802
[4] C. P. Boyer, K. Galicki, B. M. Mann:
The geometry and topology of $3$-Sasakian manifolds. J. reine angew. Math. 455 (1994), 18$3$–220.
MR 1293878
[5] D. Chinea, C. González:
A classification of almost contact metric structures. Ann. Mat. Pura Appl. (IV) Vol. CLVI (1990), 15–36.
MR 1080209
[6] N. J. Hitchin: Yang Mills on Riemannian surfaces. Proc. London Math. Soc. 55 (1987), 535–589.
[7] S. Ishihara:
Quaternion Kählerian manifolds and fibered Riemannian spaces with Sasakian $3$-structure. Kodai Math. Sem. Rep. 25 (1973), 321–329.
DOI 10.2996/kmj/1138846820 |
MR 0324592
[9] S. Kobayashi:
Principal fibre bundles with 1-dimensional toroidal group. Tôhoku Math. J. 2 (1956), 29–45.
MR 0080919
[10] S. Kobayashi, K. Nomizu:
Foundations of Differential Geometry. 2 volumes, Intersciences Pub., New York (1963, 1969).
MR 0152974
[14] D. Monar: $3$-estructuras casi contacto. Tesis Doctoral, Serv. de Public. Univ. de La Laguna (1987).
[16] J. A. Oubiña:
New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193.
MR 0834769
[17] L. Ornea, P. Piccini:
Locally conformal Kähler structures in quaternionic geometric. Trans. Amer. Math. Soc. (1995) (to appear).
MR 1348155
[20] A. F. Swann: Some remarks on quaternion-Hermitian manifolds, preprint. (1994).