Previous |  Up |  Next

Article

Summary:
We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds which are not quaternionic Kähler.
References:
[1] M. Berger: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330. MR 0079806
[2] E. Bonan: Sur les $G$-structures de type quaternionien. Cahiers de Top. et Geom. Diff. 9 (1967), 389–463. MR 0233302 | Zbl 0171.20802
[3] C. P. Boyer, K. Galicki, B. M. Mann: Quaternionic reduction and Einstein manifolds. Comm. Anal. Geom. 1(2) (1993), 229–279. DOI 10.4310/CAG.1993.v1.n2.a3 | MR 1243524
[4] C. P. Boyer, K. Galicki, B. M. Mann: The geometry and topology of $3$-Sasakian manifolds. J. reine angew. Math. 455 (1994), 18$3$–220. MR 1293878
[5] D. Chinea, C. González: A classification of almost contact metric structures. Ann. Mat. Pura Appl. (IV) Vol. CLVI (1990), 15–36. MR 1080209
[6] N. J. Hitchin: Yang Mills on Riemannian surfaces. Proc. London Math. Soc. 55 (1987), 535–589.
[7] S. Ishihara: Quaternion Kählerian manifolds and fibered Riemannian spaces with Sasakian $3$-structure. Kodai Math. Sem. Rep. 25 (1973), 321–329. DOI 10.2996/kmj/1138846820 | MR 0324592
[8] S. Ishihara: Quaternion Kählerian manifolds. J. Diff. Geom. 9 (1974), 48$3$–500. MR 0348687 | Zbl 0297.53014
[9] S. Kobayashi: Principal fibre bundles with 1-dimensional toroidal group. Tôhoku Math. J. 2 (1956), 29–45. MR 0080919
[10] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. 2 volumes, Intersciences Pub., New York (1963, 1969). MR 0152974
[11] M. Konishi: On manifolds with Sasakian $3$-structure over quaternion Kählerian manifolds. Kodai Math. Sem. Rep. 26 (1975), 194–200. DOI 10.2996/kmj/1138847001 | MR 0377782
[12] V. Kraines: Topology of quaternionic manifolds. Trans. Amer. Math. Soc. 122 (1966), 357–367. DOI 10.1090/S0002-9947-1966-0192513-X | MR 0192513 | Zbl 0148.16101
[13] Y. Y. Kuo: On almost contact $3$-structure. Tôhoku Math. J. 22 (1970), 325–332. DOI 10.2748/tmj/1178242759 | MR 0278225 | Zbl 0205.25801
[14] D. Monar: $3$-estructuras casi contacto. Tesis Doctoral, Serv. de Public. Univ. de La Laguna (1987).
[15] Y. Ogawa: Some properties on manifolds with almost contact structures. Tôhoku Math. J. 15 (1963), 148–161. DOI 10.2748/tmj/1178243841 | MR 0150717
[16] J. A. Oubiña: New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193. MR 0834769
[17] L. Ornea, P. Piccini: Locally conformal Kähler structures in quaternionic geometric. Trans. Amer. Math. Soc. (1995) (to appear). MR 1348155
[18] S. Salamon: Quaternionic Kähler manifolds. Invent. Math. 67 (1982), 142–171. MR 0664330 | Zbl 0486.53048
[19] A. F. Swann: HyperKähler and quaternionic Kähler geometry. Math. Ann. 289 (1991), 421–450. DOI 10.1007/BF01446581 | MR 1096180 | Zbl 0711.53051
[20] A. F. Swann: Some remarks on quaternion-Hermitian manifolds, preprint. (1994).
[21] S. Tanno: Almost complex structures in bundle spaces over almost contact manifolds. J. Math. Soc. Japan 17(2) (1965), 167–186. DOI 10.2969/jmsj/01720167 | MR 0184166 | Zbl 0132.16801
Partner of
EuDML logo