Previous |  Up |  Next

Article

Title: Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact $3$-structure (English)
Author: Cabrera, Francisco Martín
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 3
Year: 1998
Pages: 545-563
Summary lang: English
.
Category: math
.
Summary: We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds which are not quaternionic Kähler. (English)
MSC: 53C15
MSC: 53C25
MSC: 53C26
MSC: 53C55
idZBL: Zbl 0955.53027
idMR: MR1637934
.
Date available: 2009-09-24T10:15:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127435
.
Reference: [1] M. Berger: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes.Bull. Soc. Math. France 83 (1955), 279–330. MR 0079806
Reference: [2] E. Bonan: Sur les $G$-structures de type quaternionien.Cahiers de Top. et Geom. Diff. 9 (1967), 389–463. Zbl 0171.20802, MR 0233302
Reference: [3] C. P. Boyer, K. Galicki, B. M. Mann: Quaternionic reduction and Einstein manifolds.Comm. Anal. Geom. 1(2) (1993), 229–279. MR 1243524, 10.4310/CAG.1993.v1.n2.a3
Reference: [4] C. P. Boyer, K. Galicki, B. M. Mann: The geometry and topology of $3$-Sasakian manifolds.J. reine angew. Math. 455 (1994), 18$3$–220. MR 1293878
Reference: [5] D. Chinea, C. González: A classification of almost contact metric structures.Ann. Mat. Pura Appl. (IV) Vol. CLVI (1990), 15–36. MR 1080209
Reference: [6] N. J. Hitchin: Yang Mills on Riemannian surfaces.Proc. London Math. Soc. 55 (1987), 535–589.
Reference: [7] S. Ishihara: Quaternion Kählerian manifolds and fibered Riemannian spaces with Sasakian $3$-structure.Kodai Math. Sem. Rep. 25 (1973), 321–329. MR 0324592, 10.2996/kmj/1138846820
Reference: [8] S. Ishihara: Quaternion Kählerian manifolds.J. Diff. Geom. 9 (1974), 48$3$–500. Zbl 0297.53014, MR 0348687
Reference: [9] S. Kobayashi: Principal fibre bundles with 1-dimensional toroidal group.Tôhoku Math. J. 2 (1956), 29–45. MR 0080919
Reference: [10] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry.2 volumes, Intersciences Pub., New York (1963, 1969). MR 0152974
Reference: [11] M. Konishi: On manifolds with Sasakian $3$-structure over quaternion Kählerian manifolds.Kodai Math. Sem. Rep. 26 (1975), 194–200. MR 0377782, 10.2996/kmj/1138847001
Reference: [12] V. Kraines: Topology of quaternionic manifolds.Trans. Amer. Math. Soc. 122 (1966), 357–367. Zbl 0148.16101, MR 0192513, 10.1090/S0002-9947-1966-0192513-X
Reference: [13] Y. Y. Kuo: On almost contact $3$-structure.Tôhoku Math. J. 22 (1970), 325–332. Zbl 0205.25801, MR 0278225, 10.2748/tmj/1178242759
Reference: [14] D. Monar: $3$-estructuras casi contacto.Tesis Doctoral, Serv. de Public. Univ. de La Laguna (1987).
Reference: [15] Y. Ogawa: Some properties on manifolds with almost contact structures.Tôhoku Math. J. 15 (1963), 148–161. MR 0150717, 10.2748/tmj/1178243841
Reference: [16] J. A. Oubiña: New classes of almost contact metric structures.Publ. Math. Debrecen 32 (1985), 187–193. MR 0834769
Reference: [17] L. Ornea, P. Piccini: Locally conformal Kähler structures in quaternionic geometric.Trans. Amer. Math. Soc. (1995) (to appear). MR 1348155
Reference: [18] S. Salamon: Quaternionic Kähler manifolds.Invent. Math. 67 (1982), 142–171. Zbl 0486.53048, MR 0664330
Reference: [19] A. F. Swann: HyperKähler and quaternionic Kähler geometry.Math. Ann. 289 (1991), 421–450. Zbl 0711.53051, MR 1096180, 10.1007/BF01446581
Reference: [20] A. F. Swann: Some remarks on quaternion-Hermitian manifolds, preprint.(1994).
Reference: [21] S. Tanno: Almost complex structures in bundle spaces over almost contact manifolds.J. Math. Soc. Japan 17(2) (1965), 167–186. Zbl 0132.16801, MR 0184166, 10.2969/jmsj/01720167
.

Files

Files Size Format View
CzechMathJ_48-1998-3_10.pdf 433.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo