Previous |  Up |  Next

Article

Title: An algebraic characterization of geodetic graphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 4
Year: 1998
Pages: 701-710
Summary lang: English
.
Category: math
.
Summary: We say that a binary operation $*$ is associated with a (finite undirected) graph $G$ (without loops and multiple edges) if $*$ is defined on $V(G)$ and $uv\in E(G)$ if and only if $u\ne v$, $u * v=v$ and $v*u=u$ for any $u$, $v\in V(G)$. In the paper it is proved that a connected graph $G$ is geodetic if and only if there exists a binary operation associated with $G$ which fulfils a certain set of four axioms. (This characterization is obtained as an immediate consequence of a stronger result proved in the paper). (English)
MSC: 05C12
MSC: 05C38
MSC: 05C75
MSC: 20N02
idZBL: Zbl 0949.05022
idMR: MR1658245
.
Date available: 2009-09-24T10:17:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127448
.
Reference: [1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston, 1979. MR 0525578
Reference: [2] F. Harary: Graph Theory.Addison-Wesley, Reading (Mass.), 1969. Zbl 0196.27202, MR 0256911
Reference: [3] H. M. Mulder: The Interval Function of a Graph.Mathematisch Centrum. Amsterdam, 1980. Zbl 0446.05039, MR 0605838
Reference: [4] L. Nebeský: A characterization of the set of all shortest paths in a connected graph.Mathematica Bohemica 119 (1994), 15–20. MR 1303548
Reference: [5] L. Nebeský: A characterization of geodetic graphs.Czechoslovak Math. Journal 45 (120) (1995), 491–493. MR 1344515
Reference: [6] L. Nebeský: Geodesics and steps in a connected graph.Czechoslovak Math. Journal 47 (122) (1997), 149–161. MR 1435613, 10.1023/A:1022404624515
.

Files

Files Size Format View
CzechMathJ_48-1998-4_8.pdf 299.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo