Previous |  Up |  Next

Article

Title: Localization of global existence of holomorphic solutions of holomorphic differential equations with infinite dimensional parameter (English)
Author: Kajiwara, Joji
Author: Shon, Kwang Ho
Author: Tsuji, Miki
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 4
Year: 1998
Pages: 687-700
.
Category: math
.
MSC: 32C35
MSC: 32F15
MSC: 32G34
MSC: 32K99
MSC: 32T99
MSC: 34A20
idZBL: Zbl 0956.32016
idMR: MR1658241
.
Date available: 2009-09-24T10:17:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127447
.
Reference: [1] H. Cartan: Idéaux de fonctions analytiques de $n$ complexes variables.Bull. Soc. Math. France. 78 (1950), 28–64. MR 0036848
Reference: [2] H. Cartan: Séminaire E.N.S..École Normare Supérieur, Paris, 1951/1952.
Reference: [3] G. Coeuré: L’équation $\overline{\partial }u=F$ en dimension infinite.université Lille Publ. Int. 131, 1968, pp. 6–9.
Reference: [4] J. Colombeau and B. Perri: The $\overline{\partial }$-equation in D.F.N. spaces.J. Math. Anal. Appl. 78-2 (1980), 466–87. MR 0601549
Reference: [5] J. Colombeau and B. Perri: L’équation $\overline{\partial }$ dans les ouverts pseudo-convexes des espaces D.F.N..Bull. Soc. Math. France. 110 (1982), 15–26. MR 0662127, 10.24033/bsmf.1951
Reference: [6] S. Dineen: Sheaves of holomorphic functions on infinite dimensional vector spaces.Math. Ann. 202 (1973), 337–345. Zbl 0238.46022, MR 0330511, 10.1007/BF01433463
Reference: [7] S. Dineen: Cousin’s first problem on certain locally convex topological spaces.Acad. Brasil. Cienc. 48-1 (1976), 229–236. MR 0438376
Reference: [8] L. Gruman: The Levi problem in certain infinite dimensional vector spaces.Illinois J. Math. 18 (1974), 20–26. Zbl 0276.32017, MR 0348495, 10.1215/ijm/1256051345
Reference: [9] S. Hitotumatu: Theorem of analytic functions of several complex variables.(1960), Baihuukan. (Japanese)
Reference: [10] J. Kajiwara: On an application of L. Ehrenpreis’ method to ordinary differential equations, Kōdai Math. Sem. Rep..15-2 (1963), 94–105. MR 0151658
Reference: [11] J. Kajiwara and L. Li: Localization of Global Existence of Holomorphic Solutions of Differential Equations with Complex Parameters.Proc. 4th Int. Coll. on Differential Equations, VSP (Utrecht), 1993, pp. 147–156. MR 1458393
Reference: [12] J. Kajiwara and Y. Mori: On the existence of global holomorphic solutions of differential equations with complex parameters.Czechoslovak Math. J. 24(199) (1974), 444–454. MR 0358871
Reference: [13] J. Kajiwara and K. H. Shon: Continuation and vanishing theorem for cohomology of infinite dimensional space.Pusan Kyôngnam Math. J. 1 (1993), 65–73.
Reference: [14] Ph. Noverraz: Pseudo-Convéxité, Convéxité et Domaines d’Holomorphie en Dimension Infinie.North-Holland. Math. Studies 3 (1973).
Reference: [15] K. Oka: Sur les fonctions analytiques plusieurs variables: VII Sur quelques notions arithmétiques.Bull. Soc. math. France 78 (1950), 1–27. MR 0035831
Reference: [16] K. Oka: Sur les fonctions analytiques plusieurs variables: IX Domaines finis sans point critique intérieur.Jap. J. Math. 23 (1953), 1–27. MR 0071089
Reference: [17] R. L. Soraggi: The $\overline{\partial }$-problem for a $(0,2)$-form in a D.F.N. space.J. Func. Anal. 98 (1991), 380–402. MR 1111575, 10.1016/0022-1236(91)90084-I
Reference: [18] J. P. S$\grave{e}$rre: Quelques problémes globaux aux variétés de Stein.Coll. Plus. Var., Bruxelle (1953), 57–68.
Reference: [19] H. Suzuki: On the global existence of holomorphic solutions of $\partial u/\partial x_1 = f$.Sci. Rep. Tokyo Kyoiku Daigaku 11 (1972), 253–258. MR 0310457
Reference: [20] I. Wakabayashi: Non existence of holomorphic solutions of $\partial u/\partial z_1 = f$.Proc. Jap. Acad. 44 (1968), 820–822. MR 0240330
.

Files

Files Size Format View
CzechMathJ_48-1998-4_7.pdf 376.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo