| Title:
|
A new proof of a characterization of the set of all geodesics in a connected graph (English) |
| Author:
|
Nebeský, Ladislav |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
48 |
| Issue:
|
4 |
| Year:
|
1998 |
| Pages:
|
809-813 |
| . |
| Category:
|
math |
| . |
| MSC:
|
05C12 |
| MSC:
|
05C38 |
| idZBL:
|
Zbl 0949.05021 |
| idMR:
|
MR1658202 |
| . |
| Date available:
|
2009-09-24T10:18:42Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127456 |
| . |
| Reference:
|
[1] P. V. Ceccherini: Studying structures by counting geodesics.In: Combinatorial Designs and Applications, W. D. Wallis et al. (eds.), Marcel Dekker, New York and Basel, 1990, pp. 15–32. Zbl 0741.05041, MR 1088485 |
| Reference:
|
[2] L. Nebeský: A characterization of the set of all shortest paths in a connected graph.Math. Bohemica 119 (1994), 15–20. MR 1303548 |
| Reference:
|
[3] L. Nebeský: On the set of all shortest paths of a given length in a connected graph.Czechoslovak Math. Journal 46 (121) (1996), 155–160. MR 1371697 |
| Reference:
|
[4] L. Nebeský: Geodesics and steps in a connected graph.Czechoslovak Math. Journal 47 (122) (1997), 149–161. MR 1435613, 10.1023/A:1022404624515 |
| . |