Previous |  Up |  Next

Article

Title: $L^p$-discrepancy and statistical independence of sequences (English)
Author: Grabner, Peter J.
Author: Strauch, Oto
Author: Tichy, Robert F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 1
Year: 1999
Pages: 97-110
Summary lang: English
.
Category: math
.
Summary: We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences. (English)
Keyword: sequences
Keyword: statistical independence
Keyword: discrepancy
Keyword: distribution functions
MSC: 11K06
MSC: 11K31
MSC: 11K38
idZBL: Zbl 1074.11509
idMR: MR1676837
.
Date available: 2009-09-24T10:20:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127470
.
Reference: [1] Cameron, R. H., Martin, W. T.: Evaluation of various Wiener integrals by use of certain Sturm-Liouville differential equations.Bull. Amer. Math. Soc. 51 (1945), 73–90. MR 0011401, 10.1090/S0002-9904-1945-08275-5
Reference: [2] Doetsch, G.: Handbuch über die Laplace Transformation, II.Birkhäuser Verlag, Basel, 1955. MR 0079138
Reference: [3] Donsker, M.D.: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Stat. 23 (1952), 277–281. Zbl 0046.35103, MR 0047288, 10.1214/aoms/1177729445
Reference: [4] Doob, J.L.: Heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Stat. 20 (1949), 393–403. Zbl 0035.08901, MR 0030732, 10.1214/aoms/1177729991
Reference: [5] Grabner, P. J., Tichy, R. F.: Remarks on statistical independence of sequences.Math. Slovaca 44 (1994), 91–94. MR 1290276
Reference: [6] Grabner, P. J., Strauch, O., Tichy, R. F.: Maldistribution in higher dimensions.Mathematica Pannonica 8 (1997), 215–223. MR 1476099
Reference: [7] Kac, M.: Probability and related topics in physical sciences.Lectures in Applied Math., Proceedings of a Summer Seminar in Boulder, Col. 1957, Interscience Publishers, London, New York, 1959. Zbl 0087.33003, MR 0102849
Reference: [8] Kolmogoroff, A.: Sulla determinazione empirica di una legge di distribuzione.Giorn. Ist. Ital. Attuari 4 (1933), 83–91. Zbl 0006.17402
Reference: [9] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences.John Wiley & Sons, New York, 1974. MR 0419394
Reference: [10] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics.Springer, Berlin, Heidelberg, New York, 1966. MR 0232968
Reference: [11] Rauzy, G.: Propriétés statistiques de suites arithmétiques.Le Mathématicien, No. 15, Collection SUP, Presses Universitaires de France, Paris, 1976. Zbl 0337.10036, MR 0409397
Reference: [12] Ray, D.: On spectra of second-order differential operators.Trans. Amer. Math. Soc. 77 (1954), 299–321. Zbl 0058.32901, MR 0066539, 10.1090/S0002-9947-1954-0066539-2
Reference: [13] Strauch, O.: $L^2$ discrepancy.Math. Slovaca 44 (1994), 601–632. MR 1338433
Reference: [14] Strauch, O.: On the set of all distribution functions of a sequence.Proceedings of the conference on analytic and elementary number theory: a satellite conference of the European Congress on Mathematics ’96, Vienna, July 18–20, 1996. Dedicated to the honour of the 80th birthday of E. Hlawka, W. G. Nowak et al. (eds.), Universität Wien, 1996, pp. 214–229.
Reference: [15] Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations.Oxford University Press, 1946. Zbl 0061.13505, MR 0019765
Reference: [16] Winkler, R.: On the distribution behaviour of sequences.Math. Nachrichten 186 (1997) (to appear), 303–312. MR 1461227, 10.1002/mana.3211860118
.

Files

Files Size Format View
CzechMathJ_49-1999-1_10.pdf 405.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo