Previous |  Up |  Next


Title: On the topological boundary of the one-sided spectrum (English)
Author: Müller, Vladimír
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 3
Year: 1999
Pages: 561-568
Summary lang: English
Category: math
Summary: It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger. (English)
MSC: 47A10
idZBL: Zbl 1008.47003
idMR: MR1708358
Date available: 2009-09-24T10:25:24Z
Last updated: 2020-07-03
Stable URL:
Reference: [1] G.R. Allan: Holomorphic vector-valued functions on a domain of holomorphy.J. London Math. Soc. 42 (1967), 509–513. Zbl 0144.37702, MR 0215097, 10.1112/jlms/s1-42.1.509
Reference: [2] J. Diestel, J.J. Uhl, Jr.: Vector measures.Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977. MR 0453964
Reference: [3] R. Harte: Spectral mapping theorems.Proc. Roy. Irish. Acad. Sect. A 73 (1973), 89–107. Zbl 0255.47054, MR 0326394
Reference: [4] T. Kato: Perturbation theory for nullity, deficiency and other quantities of linear operators.J. Anal. Math. 6 (1958), 261–322. Zbl 0090.09003, MR 0107819, 10.1007/BF02790238
Reference: [5] V. Kordula, V. Müller: The distance from the Apostol spectrum.Proc. Amer. Math. Soc. (to appear). MR 1322931
Reference: [6] M. Mbekhta: Résolvant généralisé et théorie spectrale.J. Operator Theory 21 (1989), 69–105. Zbl 0694.47002, MR 1002122
Reference: [7] V. Müller: On the regular spectrum.J. Operator Theory (to appear). MR 1331783
Reference: [8] V. Rakočevič: Generalized spectrum and commuting compact perturbations.Proc. Edinb. Math. Soc. 36 (1993), 197–208. MR 1221044, 10.1017/S0013091500018332
Reference: [9] P. Saphar: Contributions à l’étude des applications linéaires dans un espace de Banach.Bull. Soc. Math. France 92 (1964), 363–384. MR 0187095, 10.24033/bsmf.1612
Reference: [10] Ch. Schmoeger: The stability radius of an operator of Saphar typex.Studia Math. 113 (1995), 169–175. MR 1318422, 10.4064/sm-113-2-169-175
Reference: [11] N. Tomczak-Jaegermann: Banach-Mazur distances and finite-dimensional operator ideals.Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific & Technical, Harlow, 1989. Zbl 0721.46004, MR 0993774


Files Size Format View
CzechMathJ_49-1999-3_9.pdf 326.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo