Previous |  Up |  Next

Article

Title: Radicals of Green’s relations (English)
Author: Bogdanović, Stojan
Author: Ćirić, Miroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 683-688
Summary lang: English
.
Category: math
.
Summary: Some structural descriptions of semigroups in which the radicals of Green’s relations are semilattice congruences will be given. (English)
MSC: 20M10
idZBL: Zbl 1008.20050
idMR: MR1746696
.
Date available: 2009-09-24T10:26:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127520
.
Reference: [1] S. Bogdanović: Semigroups with a system of subsemigroups.Inst. of Math., Novi Sad, 1985. MR 0812051
Reference: [2] S. Bogdanović and M. Ćirić: Semigroups.Prosveta, Niš, 1993 (Serbian).
Reference: [3] S. Bogdanović and M. Ćirić: Semilattices of Archimedean semigroups and (completely) $\pi $-regular semigroups, I.Filomat (Niš) 7 (1993), 1–40 (Survey Article). MR 1301859
Reference: [4] M. Ćirić and S. Bogdanović: Decompositions of semigroups induced by identities.Semigroup Forum 46 (1993), 329–346. MR 1206211, 10.1007/BF02573576
Reference: [5] M. Ćirić and S. Bogdanović: Semilattice decompositions of semigroup.Semigroup Forum 52 (1996), 119–132. MR 1371796, 10.1007/BF02574089
Reference: [6] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups.Vol 1, Amer. Math. Soc., 1961. MR 0132791
Reference: [7] D. W. Miller: Some aspects of Green’s relations on periodic semigroups.Czechoslovak Math. J. 33 (108) (1983), 537–544. Zbl 0538.20030, MR 0721084
Reference: [8] M. Petrich: Lectures in semigroups.Akad. Verlag, Berlin, 1977. Zbl 0369.20036, MR 0447437
Reference: [9] M. Petrich: Semigroup certain of whose subsemigroups have identities.Czechoslovak Math. J. 16 (91) (1966), 186–198. MR 0200370
Reference: [10] B. Ponděliček: A certain equivalence on a semigroup.Czechoslovak Math. J. 21 (95) (1971), 109–117. MR 0283110
Reference: [11] M. S. Putcha: Semigroups in which a power of each element lies in a subgroup.Semigroup Forum 5 (1973), 354–361. Zbl 0259.20052, MR 0316613
Reference: [12] M. S. Putcha: Semilattice decompositions of semigroups.Semigroup Forum 6 (1973), 12–34. Zbl 0256.20074, MR 0369582, 10.1007/BF02389104
Reference: [13] J. T. Sedlock: Green’s relations on a periodic semigroup.Czechoslovak Math. J. 19 (94) (1969), 318–322. Zbl 0214.03504, MR 0244426
Reference: [14] L. N. Shevrin: Theory of epigroups I.Mat. Sbornik 185 (1994), no. 8, 129–160. (Russian) Zbl 0839.20073, MR 1302627
Reference: [15] T. Tamura: On Putcha’s theorem concerning semilattice of Archimedean semigroups.Semigroup Forum 4 (1972), 83–86. Zbl 0256.20075, MR 0297663, 10.1007/BF02570773
.

Files

Files Size Format View
CzechMathJ_49-1999-4_2.pdf 298.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo