Previous |  Up |  Next

Article

Title: Discrete spectrum and principal functions of non-selfadjoint differential operator (English)
Author: Tunca, Gülen Başcanbaz
Author: Bairamov, Elgiz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 689-700
Summary lang: English
.
Category: math
.
Summary: In this article, we consider the operator $L$ defined by the differential expression \[ \ell (y)=-y^{\prime \prime }+q(x) y ,\quad - \infty < x < \infty \] in $L_2(-\infty ,\infty )$, where $q$ is a complex valued function. Discussing the spectrum, we prove that $L$ has a finite number of eigenvalues and spectral singularities, if the condition \[ \sup _{-\infty < x < \infty } \Big \lbrace \exp \bigl (\epsilon \sqrt{|x|}\bigr ) |q(x)|\Big \rbrace < \infty , \quad \epsilon > 0 \] holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities. (English)
MSC: 34B24
MSC: 34L05
MSC: 34L15
MSC: 34L40
MSC: 47E05
idZBL: Zbl 1015.34073
idMR: MR1746697
.
Date available: 2009-09-24T10:26:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127521
.
Reference: [1] Ö. Akin, E. Bairamov: On the structure of discrete spectrum of the non-selfadjoint system of differential equations in the first order.J. Korean Math. Soc. 32 (1995), 401–413. MR 1355662
Reference: [2] Yu. M. Berezanski: Expansion in Eigenfunctions of Selfadjoint Operators.Amer. Math. Soc., Providence R. I., 1968.
Reference: [3] B. B. Blashak: On the second-order differential operator on the whole axis with spectral singularities.Dokl. Akad. Nauk Ukr. SSR 1 (1966), 38–41. (Russian)
Reference: [4] M. G. Gasymov, F. G. Maksudov: The principal part of the resolvent of non-selfadjoint operators in neighbourhood of spectral singularities.Functional Anal. Appl. 6 (1972), 185–192. MR 0312307
Reference: [5] S. V. Hruscev: Spectral singularities of dissipative Schrödinger operators with rapidly decreasing potential.Indiana Univ. Math. Jour. 33 (1984), 613–638. Zbl 0548.34022, MR 0749318, 10.1512/iumj.1984.33.33033
Reference: [6] M. V. Keldysh: On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators.Russian Math. Survey 26 (1971), 15–44. Zbl 0225.47008, 10.1070/RM1971v026n04ABEH003985
Reference: [7] V. E. Lyance: A differential operator with spectral singularities I, II.AMS Translations 60 (2) (1967), 185–225, 227–283.
Reference: [8] F. G. Maksudov, B. P. Allakhverdiev: Spectral analysis of a new class of non-selfadjoint operators with continuous and point spectrum.Soviet Math. Dokl. 30 (1984), 566–569.
Reference: [9] V. A. Marchenko: Sturm-Liouville Operators and Their Applications.Birkhauser, Basel, 1986. MR 0897106
Reference: [10] M. A. Naimark: Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of the second order on a semi-axis.AMS Translations 16 (2) (1960), 103–193. MR 0117382
Reference: [11] M. A. Naimark: Linear Differential Operators II.Ungar, New York, 1968. MR 0353061
Reference: [12] B. S. Pavlov: The non-selfadjoint Schrödringer operator.Topics in Mathematical Physics 1 Consultants Bureau, New York (1967), 87–114.
Reference: [13] B. S. Pavlov: On separation conditions for the spectral components of a dissipative operator Math.USSR Izvestiya 9 (1975), 113–135. 10.1070/IM1975v009n01ABEH001468
Reference: [14] I. I. Privalov: The Boundary Properties of Analytic Functions.Hochschulbücher für Math. Bb. 25, VEB Deutscher Verlag, Berlin, 1956.
Reference: [15] J. T. Schwartz: Some non-selfadjoint operators.Comm. Pure and Appl. Math. 13 (1960), 609–639. Zbl 0096.08901, MR 0165372, 10.1002/cpa.3160130405
.

Files

Files Size Format View
CzechMathJ_49-1999-4_3.pdf 347.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo