Title:
|
Discrete spectrum and principal functions of non-selfadjoint differential operator (English) |
Author:
|
Tunca, Gülen Başcanbaz |
Author:
|
Bairamov, Elgiz |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
49 |
Issue:
|
4 |
Year:
|
1999 |
Pages:
|
689-700 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this article, we consider the operator $L$ defined by the differential expression \[ \ell (y)=-y^{\prime \prime }+q(x) y ,\quad - \infty < x < \infty \] in $L_2(-\infty ,\infty )$, where $q$ is a complex valued function. Discussing the spectrum, we prove that $L$ has a finite number of eigenvalues and spectral singularities, if the condition \[ \sup _{-\infty < x < \infty } \Big \lbrace \exp \bigl (\epsilon \sqrt{|x|}\bigr ) |q(x)|\Big \rbrace < \infty , \quad \epsilon > 0 \] holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities. (English) |
MSC:
|
34B24 |
MSC:
|
34L05 |
MSC:
|
34L15 |
MSC:
|
34L40 |
MSC:
|
47E05 |
idZBL:
|
Zbl 1015.34073 |
idMR:
|
MR1746697 |
. |
Date available:
|
2009-09-24T10:26:42Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127521 |
. |
Reference:
|
[1] Ö. Akin, E. Bairamov: On the structure of discrete spectrum of the non-selfadjoint system of differential equations in the first order.J. Korean Math. Soc. 32 (1995), 401–413. MR 1355662 |
Reference:
|
[2] Yu. M. Berezanski: Expansion in Eigenfunctions of Selfadjoint Operators.Amer. Math. Soc., Providence R. I., 1968. |
Reference:
|
[3] B. B. Blashak: On the second-order differential operator on the whole axis with spectral singularities.Dokl. Akad. Nauk Ukr. SSR 1 (1966), 38–41. (Russian) |
Reference:
|
[4] M. G. Gasymov, F. G. Maksudov: The principal part of the resolvent of non-selfadjoint operators in neighbourhood of spectral singularities.Functional Anal. Appl. 6 (1972), 185–192. MR 0312307 |
Reference:
|
[5] S. V. Hruscev: Spectral singularities of dissipative Schrödinger operators with rapidly decreasing potential.Indiana Univ. Math. Jour. 33 (1984), 613–638. Zbl 0548.34022, MR 0749318, 10.1512/iumj.1984.33.33033 |
Reference:
|
[6] M. V. Keldysh: On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators.Russian Math. Survey 26 (1971), 15–44. Zbl 0225.47008, 10.1070/RM1971v026n04ABEH003985 |
Reference:
|
[7] V. E. Lyance: A differential operator with spectral singularities I, II.AMS Translations 60 (2) (1967), 185–225, 227–283. |
Reference:
|
[8] F. G. Maksudov, B. P. Allakhverdiev: Spectral analysis of a new class of non-selfadjoint operators with continuous and point spectrum.Soviet Math. Dokl. 30 (1984), 566–569. |
Reference:
|
[9] V. A. Marchenko: Sturm-Liouville Operators and Their Applications.Birkhauser, Basel, 1986. MR 0897106 |
Reference:
|
[10] M. A. Naimark: Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of the second order on a semi-axis.AMS Translations 16 (2) (1960), 103–193. MR 0117382 |
Reference:
|
[11] M. A. Naimark: Linear Differential Operators II.Ungar, New York, 1968. MR 0353061 |
Reference:
|
[12] B. S. Pavlov: The non-selfadjoint Schrödringer operator.Topics in Mathematical Physics 1 Consultants Bureau, New York (1967), 87–114. |
Reference:
|
[13] B. S. Pavlov: On separation conditions for the spectral components of a dissipative operator Math.USSR Izvestiya 9 (1975), 113–135. 10.1070/IM1975v009n01ABEH001468 |
Reference:
|
[14] I. I. Privalov: The Boundary Properties of Analytic Functions.Hochschulbücher für Math. Bb. 25, VEB Deutscher Verlag, Berlin, 1956. |
Reference:
|
[15] J. T. Schwartz: Some non-selfadjoint operators.Comm. Pure and Appl. Math. 13 (1960), 609–639. Zbl 0096.08901, MR 0165372, 10.1002/cpa.3160130405 |
. |