Previous |  Up |  Next

Article

Title: Exact asymptotic behavior of singular values of a class of integral operators (English)
Author: Dostanić, Milutin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 707-732
Summary lang: English
.
Category: math
.
Summary: We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm{d}y \: L^2 (\Omega )\rightarrow L^2(\Omega )$ ($\Omega \subset \mathbb{R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m}< \alpha < \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$. (English)
MSC: 47B10
MSC: 47G10
idZBL: Zbl 1008.47045
idMR: MR1746699
.
Date available: 2009-09-24T10:26:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127523
.
Reference: [1] M. Š. Birman, M. Z. Solomyak: Asymptotic behavior of the spectrum of weakly polar integral operators.Izv. Akad. Nauk. SSSR, Ser. Mat. Tom 34 (1970), N$^0$5, 1151–1168.
Reference: [2] F. Cobos, T. Kühn: Eigenvalues of weakly singular integral operators.J. London Math. Soc. (2) 41 (1990), 323–335. MR 1067272
Reference: [3] M. Dostanić: An estimation of singular of convolution operators.Proc. Amer. Math. Soc. 123 (1995), N$^0$5, 1399–1409. MR 1246522
Reference: [4] I. C. Gohberg, M. G. Krein: Introduction to the Theory of Linear Nonselfadjoint Operators, in “Translation of Math. monographs” Vol. 18.Amer. Math. Soc., Providence, R.I., 1969. MR 0246142
Reference: [5] M. Kac: Distribution of eigenvalues of certain integral operators.Mich. Math. J. 3 (1955/56), 141–148. MR 0085650, 10.1307/mmj/1028990026
Reference: [6] G. P. Kostometov: Asymptotic behavior of the spectrum of integral operators with a singularity on the diagonal.Math. USSR Sb. T 94 (136) N$^0$3 (7), 1974, pp. 445–451. MR 0361935
Reference: [7] S. G. Mihlin: Lectures on Mathematics Physics.Moscow, 1968.
Reference: [8] C. Oehring: Asymptotics of singular numbers of smooth kernels via trigonometric transforms.J. of Math. Analysis and Applications 145 (1990), 573–605. Zbl 0699.42001, MR 1038180, 10.1016/0022-247X(90)90423-D
Reference: [9] J. B. Reade: Asymptotic behavior of eigenvalues of certain integral equations.Proceeding of the Edinburgh Math. Soc. 22 (1979), 137–144. MR 0549459, 10.1017/S0013091500016254
Reference: [10] M. Rosenblat: Some results on the asymptotic behavior of eigenvalues for a class of integral equations with translations kernels.J. Math. Mech. 12 (1963), 619–628. MR 0150551
Reference: [11] S. Y. Rotfeld: Asymptotic of the spectrum of abstract integral operators.Trudy. Moscow Mat. Obšč. T. 34 (1977), 105–128. MR 0461221
Reference: [12] S. G. Samko, A. A. Kilbas, O. I. Maricev: Fractional Integrals and Derivative and Some Applications.Minsk, 1987.
Reference: [13] E. Seneta: Regularly Varying Functions.Springer Verlag, 1976. Zbl 0324.26002, MR 0453936
Reference: [14] H. Widom: Asymptotic behavior of the eigenvalues of certain integral equations.Arch. Rational Mech. Analys. 17 (1964), 215–229. Zbl 0183.11701, MR 0169015, 10.1007/BF00282438
Reference: [15] H. Widom: Asymptotic behavior of the eigenvalues of certain integral equations.Trans. Amer. Math. Soc. 109 (1963), 278–295. Zbl 0178.14501, MR 0155161, 10.1090/S0002-9947-1963-0155161-0
.

Files

Files Size Format View
CzechMathJ_49-1999-4_5.pdf 450.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo