Title:
|
On the mixed problem for hyperbolic partial differential-functional equations of the first order (English) |
Author:
|
Człapiński, Tomasz |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
49 |
Issue:
|
4 |
Year:
|
1999 |
Pages:
|
791-809 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order \[ D_xz(x,y) = f(x,y,z_{(x,y)}, D_yz(x,y)), \] where $z_{(x,y)} \: [-\tau ,0] \times [0,h] \rightarrow \mathbb{R}$ is a function defined by $z_{(x,y)}(t,s) = z(x+t, y+s)$, $(t,s) \in [-\tau ,0] \times [0,h]$. Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem. (English) |
Keyword:
|
partial differential-functional equations |
Keyword:
|
mixed problem |
Keyword:
|
generalized solutions |
Keyword:
|
local existence |
Keyword:
|
bicharacteristics |
Keyword:
|
successive approximations |
MSC:
|
35A30 |
MSC:
|
35D05 |
MSC:
|
35L60 |
MSC:
|
35R10 |
idZBL:
|
Zbl 1010.35021 |
idMR:
|
MR1746704 |
. |
Date available:
|
2009-09-24T10:27:37Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127528 |
. |
Reference:
|
[1] V. E. Abolina, A. D. Myshkis: Mixed problem for a semilinear hyperbolic system on a plane.Mat. Sb. 50 (1960), 423–442 (Russian). |
Reference:
|
[2] P. Bassanini: On a boundary value problem for a class of quasilinear hyperbolic systems in two independent variables.Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 343–372. MR 0430543 |
Reference:
|
[3] P. Bassanini: On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form.Boll. Un. Mat. Ital. (5) 14-A (1977), 325–332. Zbl 0355.35059, MR 0492913 |
Reference:
|
[4] P. Bassanini: Iterative methods for quasilinear hyperbolic systems.Boll. Un. Mat. Ital. (6) 1-B (1982), 225–250. Zbl 0488.35056, MR 0654933 |
Reference:
|
[5] P. Bassanini, J. Turo: Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations.Ann. Mat. Pura Appl. 156 (1990), 211–230. MR 1080217, 10.1007/BF01766980 |
Reference:
|
[6] P. Brandi, R. Ceppitelli: Generalized solutions for nonlinear hyperbolic systems in hereditary setting, preprint.. |
Reference:
|
[7] P. Brandi, Z. Kamont, A. Salvadori: Existence of weak solutions for partial differential-functional equations.(to appear). |
Reference:
|
[8] L. Cesari: A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form.Ann. Sc. Norm. Sup. Pisa (4) 1 (1974), 311–358. MR 0380132 |
Reference:
|
[9] L. Cesari: A boundary value problem for quasilinear hyperbolic systems.Riv. Mat. Univ. Parma 3 (1974), 107–131. MR 0435616 |
Reference:
|
[10] S. Cinquini: Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti.Rend. Sem. Mat. Fis. Univ. Milano 52 (1982). |
Reference:
|
[11] M. Cinquini-Cibrario: Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti.Rend. Ist. Lombardo 104 (1970), 759–829. Zbl 0215.16202, MR 0296485 |
Reference:
|
[12] M. Cinquini-Cibrario: Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti.Ann. Mat. Pura. Appl. 140 (1985), 223–253. MR 1553456, 10.1007/BF01776851 |
Reference:
|
[13] T. Człapiński: On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order.Zeit. Anal. Anwend. 10 (1991), 169–182. 10.4171/ZAA/439 |
Reference:
|
[14] T. Dzłapiński: On the mixed problem for quasilinear partial differential-functional equations of the first order.Zeit. Anal. Anwend. 16 (1997), 463–478. 10.4171/ZAA/773 |
Reference:
|
[15] T. Człapiński: Existence of generalized solutions for hyperbolic partial differential-functional equations with delay at derivatives.(to appear). |
Reference:
|
[16] Z. Kamont, K. Topolski: Mixed problems for quasilinear hyperbolic differential-functional systems.Math. Balk. 6 (1992), 313–324. MR 1203465 |
Reference:
|
[17] A. D. Myshkis; A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables.Diff. Urav. 17 (1981), 488–500. (Russian) Zbl 1152.35071, MR 0610510 |
Reference:
|
[18] A. D. Myshkis, A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables.Proc. of Sec. Conf. Diff. Equat. and Appl., Rousse (1982), 524–529. (Russian) |
Reference:
|
[19] J. Turo: On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order.Czechoslovak Math. J. 36 (1986), 185–197. Zbl 0612.35082, MR 0831307 |
Reference:
|
[20] J. Turo: Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables.Ann. Polon. Math. 49 (1989), 259–278. Zbl 0685.35065, MR 0997519, 10.4064/ap-49-3-259-278 |
. |