Previous |  Up |  Next

Article

Title: The structure of transitive ordered permutation groups (English)
Author: Zhu, Zuo-Tong,
Author: Zhenyu, Huang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 811-815
Summary lang: English
.
Category: math
.
Summary: We give some necessary and sufficient conditions for transitive $l$-permutation groups to be $2$-transitive. We also discuss primitive components and give necessary and sufficient conditions for transitive $l$-permutation groups to be normal-valued. (English)
Keyword: transitive $l$-permutation group
Keyword: stabilizer subgroup
Keyword: primitive component
Keyword: normal-valued $l$-group.
MSC: 06C15
MSC: 06F15
idZBL: Zbl 1007.06012
idMR: MR1746705
.
Date available: 2009-09-24T10:27:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127529
.
Reference: [1] W. C. Holland: Transitive lattice-ordered permutation groups.Math. Zeit. 87 (1965), 420–433; MR31 (1966), # 2310. Zbl 0147.01204, MR 0178052, 10.1007/BF01111722
Reference: [2] A. M. W. Glass: Ordered Permutation Groups.Cambridge University Press, 1981, pp. 76–116. Zbl 0473.06010, MR 0645351
Reference: [3] Z. T. Zhu and J. M. Huang: Stability of $l$-permutation groups.J. of Nanjing Uni. Math. Biquarterly 11, No. 1 (1994), 18–21. MR 1293882
Reference: [4] M. Anderson and T. Feil: Lattice-Ordered Groups.D. Reidel Publishing Company, Dordrecht, Holland, 1988, pp. 29–31. MR 0937703
Reference: [5] Z. T. Zhu and J. M. Huang: Congruent pairs on a set.Chinese Quarterly Journal of Math. 9, No. 3 (1994), 37–41.
Reference: [6] S. H. McClearly: The structure of intransitive ordered permutation groups.Algebra Universalis 6 (1976), 229–255. MR 0424638, 10.1007/BF02485831
Reference: [7] A. M. W. Glass: Elementary types of automorphisms of linearly ordered sets—a survey.Algebra, Carbondale 1980, R.K. Amayo (ed.), Springer, Lecture Notes No. 848, pp. 218–229. Zbl 0466.06016, MR 0613188
Reference: [8] S. H. McClearly: The structure of ordered permutation groups applied to lattice-ordered groups.Notices Amer. Math. Soc., 21 (1974), February, # 712–714, PA336.
Reference: [9] Z.T. Zhu and Q. Chen: The universal mapping problems of the $l$-group category.Chinese Journal of Math. 23, No. 2 (1995), 131–140. MR 1340760
Reference: [10] A. M. W. Glass and W. C. Holland (Eds): Lattice-Ordered Groups.Kluwer Academic Publishers, 1989, pp. 23–40. MR 1036072
.

Files

Files Size Format View
CzechMathJ_49-1999-4_11.pdf 292.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo