Previous |  Up |  Next

Article

Title: A Daniell integral approach to nonstandard Kurzweil-Henstock integral (English)
Author: Bianconi, Ricardo
Author: Prandini, João C.
Author: Possani, Cláudio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 817-823
Summary lang: English
.
Category: math
.
Summary: A workable nonstandard definition of the Kurzweil-Henstock integral is given via a Daniell integral approach. This allows us to study the HL class of functions from . The theory is recovered together with a few new results. (English)
MSC: 03H05
MSC: 26A39
MSC: 26E35
MSC: 28A25
MSC: 28E05
idZBL: Zbl 1008.26021
idMR: MR1746706
.
Date available: 2009-09-24T10:27:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127530
.
Reference: [albev] S. Albeverio, J. E. Fenstad, R. Høegh-Krohn, and T. Lindstrøm: Nonstandard methods in stochastic analysis and mathematical physics.Academic Press, Orlando, 1986. MR 0859372
Reference: [ben] B. Benninghofen: Superinfinitesimals and the calculus of the generalized Riemann integral.Models and sets (Aachen, 1983), Lect. Notes in Math., 1103, Springer, Berlin-New York, pp. 9–52. Zbl 0583.26005, MR 0775686
Reference: [bi] R. Bianconi: A note on frameworks of nonstandard analysis, in preparation..
Reference: [bipra] R. Bianconi, J. C. Prandini: Nonstandard Henstock-Kurzweil integralProc. 42nd. SBA.(1995, 669–681).
Reference: [revHe] R. Henstock: Review of.Mathematical Reviews, 86g:26008.
Reference: [he] R. Henstock: Lectures on the theory of integration.Series in Real Analysis Volume 1, World Scientific, Singapore, 1988. Zbl 0668.28001, MR 0963249
Reference: [hurdloeb] A. E. Hurd, P. A. Loeb: An introduction to nonstandard real analysis.Academic Press, Orlando, 1985. MR 0806135
Reference: [keisler] H. J. Keisler: Elementary calculus.Prindle, Weber and Schmidt, Boston, 1976. Zbl 0325.26001
Reference: [lanzhou] Lee Peng-Yee: Lanzhou lectures on Henstock integration.Series in Real Analysis Volume 2, World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [schwabik] S. Schwabik: Generalized ordinary differential equations.Series in Real Analysis Volume 5, World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241
.

Files

Files Size Format View
CzechMathJ_49-1999-4_12.pdf 333.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo