Previous |  Up |  Next

Article

References:
[1] A. Augustynowicz, M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type. Math. Nachr. 145 (1990), 255–269. DOI 10.1002/mana.19901450120 | MR 1069034
[2] J. Banaś: Applications of measures of noncompactness to various problems. Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987). MR 0884890
[3] D. Bugajewski: On some applications of theorems on the spectral radius to differential equations. J. Anal. Appl. 16 (1997), 479–484. MR 1459970 | Zbl 0880.35125
[4] D. Bugajewski, M. Zima: On the Darboux problem of neutral type. Bull. Austral. Math. Soc. 54 (1996), 451–458. DOI 10.1017/S0004972700021869 | MR 1419608
[5] J. Daneš: On local spectral radius. Čas. pěst. mat. 112 (1987), 177–187. MR 0897643
[6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian). Sib. Mat. Zhur. 7, 460–464.
[7] L. Faina: Existence and continuous dependence for a class of neutral functional differential equations. Ann. Polon. Math. 64 (1996), 215–226. MR 1410341 | Zbl 0873.34051
[8] K.-H. Förster, B. Nagy: On the local spectral radius of a nonnegative element with respect to an irreducible operator. Acta Sci. Math. 55 (1991), 155–166. MR 1124954
[9] M. A. Krasnoselski et al.: Approximate solutions of operator equations. Noordhoff, Groningen, 1972.
[10] V. Müller: Local spectral radius formula for operators in Banach spaces. Czechoslovak Math. J. 38 (1988), 726–729. MR 0962915
[11] P. P. Zabrejko: The contraction mapping principle in K-metric and locally convex spaces (in Russian). Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068. MR 1095667
[12] M. Zima: A certain fixed point theorem and its applications to integral-functional equations. Bull. Austral. Math. Soc. 46 (1992), 179–186. DOI 10.1017/S0004972700011813 | MR 1183775 | Zbl 0761.34048
[13] M. Zima: A theorem on the spectral radius of the sum of two operators and its applications. Bull. Austral. Math. Soc. 48 (1993), 427–434. DOI 10.1017/S0004972700015884 | MR 1248046
Partner of
EuDML logo